• 4 minutes Will Libya Ever Recover?
  • 9 minutes USGS Announces Largest Continuous Oil Assessment in Texas and New Mexico
  • 13 minutes What Can Bring Oil Down to $20?
  • 16 minutes Venezuela continues to sink in misery
  • 12 hours Alberta govt to construct another WCS processing refinery
  • 3 hours Paris Is Burning Over Climate Change Taxes -- Is America Next?
  • 6 hours Rage Without Proof: Maduro Accuses U.S. Official Of Plotting Venezuela Invasion
  • 3 hours Instead Of A Withdrawal, An Initiative: Iran Hopes To Agree With Russia And Turkey on Syrian Constitution Forum
  • 14 hours Let's Just Block the Sun, Shall We?
  • 4 hours Water. The new oil?
  • 1 day U.S. Senate Advances Resolution To End Military Support For Saudis In Yemen
  • 4 hours Storage will in time change the landscape for electricity
  • 1 day Quebecans Snub Noses at Alberta's Oil but Buy More Gasoline
  • 3 hours Regular Gas dropped to $2.21 per gallon today
  • 2 days OPEC Cuts Deep to Save Cartel
  • 2 days $867 billion farm bill passed
Alt Text

Is Gasoline Demand Really Slipping?

In a somewhat befuddling scenario,…

Alt Text

Oil Majors Cautious But Upbeat About 2019

Oil majors ConocoPhilips and Hess…

Robert Rapier

Robert Rapier

More Info

Trending Discussions

This Battery Breakthrough Could Change The World

Last week I happened to catch an intriguing documentary on NOVA called Search for the Super Battery.

The topic is of intense interest to me, as the development of better, cheaper batteries is critical for both the future of electric vehicles (EVs) and for the future electrical grid. Battery improvements are needed to increase the range of EVs, and cheaper batteries can help drive down the costs of EVs so more consumers can afford them.

For the electrical grid, increased penetration of renewables poses some challenges because of their intermittent nature. Since the wind could stop blowing at any time, and the sun’s radiation can only be captured during the day, these sources of power need to be backed up. Cost-effective storage of power could enable essentially unlimited penetration of renewables into the grid.

Thus, tremendous effort has gone into battery development in recent years. The effort is paying off, with prices for battery cells falling by 70 percent between 2012 and 2017, according to PV Magazine. But costs need to continue to decline to make widespread use of utility-scale battery storage a reality.

Lithium-ion batteries have become the battery of choice in many consumer electronics such as laptops, and in electric vehicles such as those produced by Tesla. But there are a couple of problems with these types of batteries that need to be resolved.

Related: OPEC May Ease Oil Cuts As Soon As June

For reasons that are explained in the documentary, the use of lithium-metal electrodes enables a greater energy density than conventional lithium-ion batteries. But lithium-metal electrodes can develop finger-like structures called dendrites that will eventually short-circuit the battery.

The solution to this problem was to replace the lithium-metal electrode with a carbon electrode with a lattice structure that houses lithium ions. Thus, the lithium-ion battery was born, albeit with a lower energy storage capacity than a battery utilizing a solid lithium-metal electrode.

Lithium-ion batteries also suffer from one other shortcoming that has been the subject of numerous news articles. If these batteries are damaged, they can explode or catch fire. This has happened in laptops, cell phones, and EVs. If damaged, all of the energy stored inside the battery can release over a short period of time, and the result can be a hot, intense fire.

Enter the battery that could change the world. It addresses both the energy density problem and the danger of fire if the battery is damaged.

Related: Oil Slides As Saudis, Russia Consider 1 Million Bpd Output Boost

The NOVA documentary profiled the work of Professor Mike Zimmerman of Tufts University. Professor Zimmerman has developed a battery that replaces the liquid electrolyte in the battery with a flame-retardant plastic. This battery won’t catch on fire if it is cut, punctured or crushed. In fact, it can continue to produce power despite significant damage.

Lithium ions produced at the lithium electrode travel through the plastic as quickly as they do a liquid electrolyte. The plastic also physically prevents the electrodes from forming the dendrites that can short out the battery. Lithium metal can be used for the negative electrode, which could potentially double the battery’s energy density.

Professor Zimmerman’s work has been done mostly in stealth. The NOVA special was reportedly the first television interview he had done on his work. He has formed a company, Ionic Materials, and recently raised $65 million to commercialize this solid-state battery. (Jump to the 30:40 mark in the video to see the portion on Professor Zimmerman’s work).

The interview didn’t mention any shortcomings with the battery or any potential challenges in commercializing it. So, I reached out to Ionic Materials to ask a few of my own questions but had not heard back from the company prior to publication of this article.

But if the battery performs as advertised, it could significantly help advance the move to greener power production, and in the penetration of EVs.

By Robert Rapier

More Top Reads From Oilprice.com:




Back to homepage

Trending Discussions


Leave a comment
  • hall monitor on May 27 2018 said:
    Two likely drawbacks to this technology compared to existing liquid electrolytes are:
    1. worse performance at low temperature (most solid electrolytes are much worse)
    2. lower power density (may be unsuitable for high torque applications, e.g. rapid vehicle acceleration)

    Still, the potential is quite interesting.

Leave a comment




Oilprice - The No. 1 Source for Oil & Energy News