• 4 minutes Who Really Benefits From The "Iran Attacked Saudi Arabia" Narrative?
  • 7 minutes Trump Will Win In 2020
  • 12 minutes Ethanol, the Perfect Home Remedy for A Saudi Oil Fever
  • 15 minutes Experts review Saudi damage photos. Say Said is need to do a lot of explaining.
  • 1 min Millennials: A boil on the butt of the work ethic
  • 8 hours Hong Kong protesters appeal to Trump for support.
  • 18 hours Europe: The Cracks Are Beginning To Show
  • 7 hours A little something for all you Offshore swabbies
  • 20 hours Iran Vows Major War Even If US Conducts "Limited Strikes"
  • 15 hours Ban Fracking? What in the World Are Democrats Thinking?
  • 6 hours Memorize date 05/15/2018 cause Huawei ban is the most important single event in world history after 9/11/2001.
  • 3 hours When Trying To Be Objective About Ethanol, Don't Include Big Oil Lies To Balance The Argument
  • 3 hours LA Times: Vote Trump out in 2020 to Prevent Climate Apocalypse
  • 1 min US and China are already in a full economic war and this battle for global hegemony is a little bit frightening
  • 5 hours Saudi State-of-Art Defense System looking the wrong way. MBS must fire Defense Minister. Oh, MBS is Defense Minister. Forget about it.
  • 6 hours Shale profitability
  • 2 hours Pompeo: Aramco Attacks Are An "Act Of War" By Iran
  • 15 hours Let's shut down dissent like The Conversation in Australia
Alt Text

The Restoration Scenarios For Saudi Oil Supply

After the largest supply disruption…

Alt Text

The Man That Could Trigger An Iran War

Tensions between Iran and its…

Alt Text

Oil Markets Are One Outage Away From Crisis

Traders are still trying to…

Irina Slav

Irina Slav

Irina is a writer for Oilprice.com with over a decade of experience writing on the oil and gas industry.

More Info

Premium Content

The Unlikely Solution To The Battery Bottleneck

Rechargeable lithium-ion batteries have one big problem that researchers are dedicating a lot of time to: their cathodes. Now, a team from the University of Maryland, the Brookhaven National Laboratory, and the U.S. Army Research Lab claims to have made a breakthrough in solving the problem.

Cathodes, unlike anodes, tend to have a very limited capacity. As one of the lead authors in the new research puts it, “Cathode materials are always the bottleneck for further improving the energy density of lithium-ion batteries.” So the team set out to improve the energy density of the cathode by using an unlikely material: iron.

They used a new form of iron trifluoride, which is cheap, easy to come by, and environmentally friendly. More importantly, iron trifluoride can transfer more than one electron when the battery discharges and charges, which makes such a battery theoretically much more efficient than comparable ones.

However, iron trifluoride doesn’t exactly have a good track record in batteries: it has low energy efficiency, slow reaction rate, and it also comes with side reactions that compromise the rechargeability of the battery it is used in.

To tackle these challenges and make iron trifluoride actually usable, they added oxygen and cobalt atoms to the cathode rods they worked with. Before adding them, the battery worked by converting lithium ions into iron and lithium fluoride in the cathode. The reverse reaction, however, was not possible. After adding the cobalt and the oxygen atoms, the reaction became reversible. Related: Iran Warns North Korea About The United States

After this, the team did a lot of measurement and analysis work to confirm they had actually solved iron’s battery problem. It seems they have, but the applicability of this solution is yet to be determined. If iron trifluoride batteries become a mass thing, they could accelerate the adoption of grid-scale energy storage installations—these are urgently needed to eliminate the number-one problem of solar and wind energy: their intermittent nature.

Yet there have been so many breakthroughs in battery technology that it has been difficult to single out the ones that have the best chance of going mainstream. Lots of scientists are looking for cheaper, more efficient materials to use in lithium-ion batteries, and many are actually looking for substitutes to lithium-ion technology.

Australian researchers recently announced a battery that works with just water and carbon, breaking down the water into its constituent elements, with the hydrogen bonding with the carbon electrode during the charging phase. The discharge reverses the reaction, and the hydrogen leaves the carbon cathode to bind with oxygen and turn back into water. Related: Venezuela Forced To Shut Down Production As Operations Fall Apart

Another recent announcement in the battery field also deals with hydrolysis, but with the addition of manganese to facilitate the reaction. The researchers behind this battery say it’s very energy dense, at 140 Wh/kg, durable, with a lifecycle of 10,000 charge-discharge cycles, and is easily scalable, which would make it perfect for energy storage systems at solar and wind farms.

Battery development is definitely a hot space right now, what with the great expectations about EVs and renewable energy. Yet most breakthroughs have only taken place in the lab. It will be some time before we know for sure which promising batteries actually live up to the promise.

By Irina Slav for Oilprice.com

More Top Reads From Oilprice.com:




Download The Free Oilprice App Today

Back to homepage



Leave a comment

Leave a comment




Oilprice - The No. 1 Source for Oil & Energy News
Download on the App Store Get it on Google Play