• 4 minutes Pompeo: Aramco Attacks Are An "Act Of War" By Iran
  • 7 minutes Who Really Benefits From The "Iran Attacked Saudi Arabia" Narrative?
  • 11 minutes Trump Will Win In 2020
  • 15 minutes Experts review Saudi damage photos. Say Said is need to do a lot of explaining.
  • 8 mins Ethanol is the SAVIOR of the Oil Industry, Convenience Store Industry, Automotive Supply Chain Industry and Much More!
  • 29 mins Ethanol, the Perfect Home Remedy for A Saudi Oil Fever
  • 39 mins Instagram Now Banning Photos Of People At Gun Ranges, Claiming They Promote "Violence"
  • 12 hours Let's shut down dissent like The Conversation in Australia
  • 6 hours Famous Manufacturer of Anti-Ethanol Additives Proves Ethanol's Safety and Benefits
  • 18 hours Hong Kong protesters appeal to Trump for support.
  • 11 hours Collateral Damage: Saudi Disruption Leaves Canada's Biggest Refinery Vulnerable
  • 8 hours Trump Accidentally Discusses Technology Used In The Border Wall
  • 18 hours Saudi State-of-Art Defense System looking the wrong way. MBS must fire Defense Minister. Oh, MBS is Defense Minister. Forget about it.
  • 8 hours One of the fire satellite pictures showed what look like the fire hit outside the main oil complex. Like it hit storage or pipeline facility. Not big deal.
  • 3 hours US and China are already in a full economic war and this battle for global hegemony is a little bit frightening
  • 11 hours Iran in the world market
Alt Text

Saudi Arabia Pours Cold Water On Oil Rally

After its sudden spike following…

Alt Text

The World's Top Oil Basin Is Running Out Of Space

Oil companies are scrambling to…

Alt Text

Is It Time To Invest In Offshore Drillers?

Following an “absolutely horrible year,”…

Brian Westenhaus

Brian Westenhaus

Brian is the editor of the popular energy technology site New Energy and Fuel. The site’s mission is to inform, stimulate, amuse and abuse the…

More Info

Premium Content

Using Carbon as a Cheap Substitute for Platinum Catalysts

An Oak Ridge National Laboratory as part of a team searching for an inexpensive alternative to platinum catalysts, turned to carbon, developing multi-walled carbon nanotube complex that consists of cylindrical sheets of carbon.

Led by Stanford University’s Hongjie Dai, the team’s newly developed carbon nanotube material could help lower the cost of fuel cells, catalytic converters and similar energy-related technologies by delivering a substitute for expensive platinum catalysts.

Platinum has long been prized for its ability to spur key chemical reactions in a process called catalysis, but at more than $1,400 ± an ounce at this writing, its high price is a limiting factor for applications like fuel cells, which rely on the metal.

The cylindrical sheets of carbon are built up to multi-walled carbon nanotube complex.  Next the outer wall of the complex is partially “unzipped” with the addition of ammonia.  That’s when the new material was found to exhibit catalytic properties comparable to platinum.  That was too easy and good to be true.

The researchers suspected that the complex’s properties were due to added nitrogen and iron impurities.  However, they couldn’t verify the material’s chemical behaviour until ORNL ‘microscopists’ made images of the unzipped tubes on an atomic level.

Iron and Nitrogen Atoms in the Carbon Nanotube Complex.
Iron and Nitrogen Atoms in the Carbon Nanotube Complex.

Team member Juan-Carlos Idrobo of ORNL offers a brief overview of the procedure, “With conventional transmission electron microscopy, it is hard to identify elements. Using a combination of imaging and spectroscopy in our scanning transmission electron microscope, the identification of the elements is straightforward because the intensity of the nanoscale images tells you which element it is. The brighter the intensity, the heavier the element. Spectroscopy can then identify the specific element. ”

Carbon Nanotube Complex with the Iron Atoms Circled in Red.
Carbon Nanotube Complex with the Iron Atoms Circled in Red.

The ORNL microscopic analysis confirmed that the nitrogen and iron elements were indeed incorporated into the carbon structure, causing the observed catalytic properties similar to those of platinum. The next step for the team is to understand the relationship between the nitrogen and iron to determine whether the elements work together or independently.

The team’s findings are published in Nature Nanotechnology as “An Oxygen Reduction Electrocatalyst Based on Carbon Nanotube-Graphene Complexes.”

Now the new catalyst isn’t as broadly applicable as platinum, it can act as an oxygen reduction reaction electrocatalyst in both acidic and alkaline solutions.  The team by design or happenstance, which isn’t made clear, learned a unique oxidation condition partially unzipped the outer walls of the few-walled carbon nanotubes creating nanoscale sheets of graphene attached to the inner tubes.

So far as is known, the graphene sheets contain extremely small amounts of iron that originated from nanotube growth seeds, and nitrogen impurities, which facilitate the formation of catalytic sites and boost the activity of the catalyst.

Of considerable importance is while the graphene sheets formed from the unzipped part of the outer wall of the nanotubes are responsible for the catalytic activity, the inner walls remain intact and retain their electrical conductivity, which facilitates charge transport during electrocatalysis.
It’s all rather neat.  The outstanding question may be what other ‘impurities’ might be applied to arrive at other goals.  Those inner walls retaining electrical conductivity are sure incentives for much more research.

By. Brian Westenhaus

Source: Carbon May Substitute for Platinum as a Catalyst




Download The Free Oilprice App Today

Back to homepage



Leave a comment

Leave a comment




Oilprice - The No. 1 Source for Oil & Energy News
Download on the App Store Get it on Google Play