• 3 minutes e-car sales collapse
  • 6 minutes America Is Exceptional in Its Political Divide
  • 11 minutes Perovskites, a ‘dirt cheap’ alternative to silicon, just got a lot more efficient
  • 9 hours GREEN NEW DEAL = BLIZZARD OF LIES
  • 2 days Could Someone Give Me Insights on the Future of Renewable Energy?
  • 2 days How Far Have We Really Gotten With Alternative Energy
  • 1 day e-truck insanity
  • 2 hours An interesting statistic about bitumens?
  • 4 days "What’s In Store For Europe In 2023?" By the CIA (aka RFE/RL as a ruse to deceive readers)
  • 6 days Bankruptcy in the Industry
  • 3 days Oil Stocks, Market Direction, Bitcoin, Minerals, Gold, Silver - Technical Trading <--- Chris Vermeulen & Gareth Soloway weigh in
  • 7 days The United States produced more crude oil than any nation, at any time.
U.S. Drilling Activity Slips

U.S. Drilling Activity Slips

The total number of active…

Weak Diesel Prices Reflect Global Economic Slowdown

Weak Diesel Prices Reflect Global Economic Slowdown

Diesel fuel production has ramped…

Brian Westenhaus

Brian Westenhaus

Brian is the editor of the popular energy technology site New Energy and Fuel. The site’s mission is to inform, stimulate, amuse and abuse the…

More Info

Premium Content

Next-Generation Steel Offers Enhanced Performance for Hydrogen

  • The new stainless steel, called SS-H2, is highly resistant to corrosion, making it suitable for use in environments like seawater electrolyzers for hydrogen production.
  • This innovation represents a significant breakthrough over conventional stainless steel, as it employs a "sequential dual-passivation" strategy for enhanced durability.
  • The SS-H2's development could significantly reduce the costs of constructing and operating hydrogen production facilities, with potential to replace expensive materials like Au- or Pt-coated titanium in water electrolyzers.
h2

A University of Hong Kong research project claims to have made a brand-new breakthrough over conventional stainless steel and the development of stainless steel for hydrogen (SS-H2).

The discovery has been published in Materials Today in the paper titled “A sequential dual-passivation strategy for designing stainless steel used above water oxidation.” The research achievements are currently applying for patents in multiple countries, and two of them has already been granted authorization.

The research project led by Professor Mingxin Huang at the Department of Mechanical Engineering of the University of Hong Kong (HKU) marks another major achievement by Professor Huang’s team in its ‘Super Steel’ Project, following the development of the anti-COVID-19 stainless steel in 2021, and ultra-strong and ultra-tough Super Steel in 2017 and 2020 respectively.

The new steel developed by the team exhibits high corrosion resistance, enabling its potential application for green hydrogen production from seawater, where a novel sustainable solution is still in the pipeline.

The performance of the new steel in a salt water electrolyzer is comparable to the current industrial practice using titanium as structural parts to produce hydrogen from desalted seawater or acid, while the cost of the new steel is much cheaper.

Since its discovery a century ago, stainless steel has always been an important material widely used in corrosive environments. Chromium is an essential element in establishing the corrosion resistance of stainless steel. A passive film is generated through the oxidation of chromium (Cr) and protects stainless steel in natural environments.

Unfortunately, this conventional single-passivation mechanism based on Cr has halted further advancement of stainless steel.

Owing to the further oxidation of stable Cr2O3 into soluble Cr(VI) species, tranpassive corrosion inevitably occurs in conventional stainless steel at ~1000 mV (saturated calomel electrode, SCE), which is below the potential required for water oxidation at ~1600 mV.

254SMO super stainless steel, for instance, is a benchmark among Cr-based anti-corrosion alloys and has superior pitting resistance in seawater; however, transpassive corrosion limits its application at higher potentials.

By using a “sequential dual-passivation” strategy, Professor Huang’s research team developed the novel SS-H2 with superior corrosion resistance.

In addition to the single Cr2O3-based passive layer, a secondary Mn-based layer forms on the preceding Cr-based layer at ~720 mV. The sequential dual-passivation mechanism prevents the SS-H2 from corrosion in chloride media to an ultra-high potential of 1700 mV. The SS-H2 demonstrates a fundamental breakthrough over conventional stainless steel.

“Initially, we did not believe it because the prevailing view is that Mn impairs the corrosion resistance of stainless steel. Mn-based passivation is a counter-intuitive discovery, which cannot be explained by current knowledge in corrosion science. However, when numerous atomic-level results were presented, we were convinced. Beyond being surprised, we cannot wait to exploit the mechanism,” said Dr Kaiping Yu, the first author of the article, whose PhD is supervised by Professor Huang.

From the initial discovery of the innovative stainless steel to achieving a breakthrough in scientific understanding, and ultimately preparing for the official publication and hopefully its industrial application, the team devoted nearly six years to the work.

“Different from the current corrosion community, which mainly focuses on the resistance at natural potentials, we specializes in developing high-potential-resistant alloys. Our strategy overcame the fundamental limitation of conventional stainless steel and established a paradigm for alloy development applicable at high potentials. This breakthrough is exciting and brings new applications.” Professor Huang said.

At present, for water electrolyzer in desalted seawater or acid solutions, expensive Au- or Pt-coated Ti are required for structural components.

For instance, the total cost of a 10-megawatt PEM electrolysis tank system in its current stage is approximately HK$17.8 million, with the structural components contributing up to 53% of the overall expense.

The breakthrough made by Professor Huang’s team makes it possible to replace these expensive structural components with more economically steel.

As estimated, the employment of SS-H2 is expected to cut the cost of structural material by about 40 times, demonstrating a great foreground of industrial applications.

“From experimental materials to real products, such as meshes and foams, for water electrolysers, there are still challenging tasks at hand. Currently, we have made a big step toward industrialization. Tons of SS-H2-based wire has been produced in collaboration with a factory from the Mainland. We are moving forward in applying the more economical SS-H2 in hydrogen production from renewable sources,” added Professor Huang.

***

ADVERTISEMENT

This looks like a real improvement for steel’s use in hydrogen production. The savings in setting up a production facility could be vastly reduced.

But the risks involved both in finance and safety are substantial and are going to demand some intense testing before responsible engineers make a switch. That’s not to say some executives might dive in anyway and test with real money and lives.

What one is hoping for is a steel with very low permeability and porosity to H or H2. Best of all those tests would offer a high pressure solution for processing and storage.

Progress is slow. Trying to contain the universe’s smallest element is going to be a very very big deal when the success fianlly happens.

By Brian Westenhaus via New Energy and Fuel

More Top Reads From Oilprice.com:


Download The Free Oilprice App Today

Back to homepage





Leave a comment

Leave a comment




EXXON Mobil -0.35
Open57.81 Trading Vol.6.96M Previous Vol.241.7B
BUY 57.15
Sell 57.00
Oilprice - The No. 1 Source for Oil & Energy News