• 3 minutes e-car sales collapse
  • 6 minutes America Is Exceptional in Its Political Divide
  • 11 minutes Perovskites, a ‘dirt cheap’ alternative to silicon, just got a lot more efficient
  • 1 day GREEN NEW DEAL = BLIZZARD OF LIES
  • 3 days "What’s In Store For Europe In 2023?" By the CIA (aka RFE/RL as a ruse to deceive readers)
  • 8 days America should go after China but it should be done in a wise way.
  • 1 day Even Shell Agrees with Climate Change!
  • 3 days How Far Have We Really Gotten With Alternative Energy
  • 4 days The European Union is exceptional in its political divide. Examples are apparent in Hungary, Slovakia, Sweden, Netherlands, Belarus, Ireland, etc.
  • 3 days World could get rid of Putin and Russia but nobody is bold enough
  • 6 days Oil Stocks, Market Direction, Bitcoin, Minerals, Gold, Silver - Technical Trading <--- Chris Vermeulen & Gareth Soloway weigh in
Editorial Dept

Editorial Dept

More Info

From Bacteria to Biofuel, Invest in Milking Microbes

What if we could take a soil bacteria and tinker with its genes to create a biofuel much in the same way that a cow produces milk? Well, we can, or at least a team of scientists has figured out how to do it, and the next step is figuring out how to make it happen on a commercial scale.

The common soil bacterium Raistonia eutropha produces complex carbon compounds when stressed, and according to MIT, its scientists have engineered the bacterium’s genes to produce isobutanol, which can be substituted for or blended with gasoline. 

When the bacterium is stressed it stops growing and uses the energy to produce fuel, expelling the fuel rather than storing it up, which means that it scientists can figure out how to do this on a commercial scale it would be less costly than other ways of producing biofuel. Why? Because typically a microorganism producing biofuel is destroyed in the extraction process. This genetically tweaked bacterium simply expels and continues to produce.

Earlier this month, MIT scientist Christopher Brigham detailed the findings, along with his co-author, in the Applied Microbiology and Biotechnology journal. The team is led by professor of biology Anthony Sinskey.

According to Brigham, the bacterium is enters into a carbon-storage mode when its source of essential nutrients (nitrate or phosphate) is restricted. “What it does is take whatever carbon is available, and stores it in the form of a polymer, which is similar…




EXXON Mobil -0.35
Open57.81 Trading Vol.6.96M Previous Vol.241.7B
BUY 57.15
Sell 57.00
Oilprice - The No. 1 Source for Oil & Energy News