• 3 minutes e-car sales collapse
  • 6 minutes America Is Exceptional in Its Political Divide
  • 11 minutes Perovskites, a ‘dirt cheap’ alternative to silicon, just got a lot more efficient
  • 4 hours GREEN NEW DEAL = BLIZZARD OF LIES
  • 2 days "What’s In Store For Europe In 2023?" By the CIA (aka RFE/RL as a ruse to deceive readers)
  • 7 days America should go after China but it should be done in a wise way.
  • 7 hours Even Shell Agrees with Climate Change!
  • 2 days How Far Have We Really Gotten With Alternative Energy
  • 2 days World could get rid of Putin and Russia but nobody is bold enough
  • 3 days The European Union is exceptional in its political divide. Examples are apparent in Hungary, Slovakia, Sweden, Netherlands, Belarus, Ireland, etc.
  • 5 days Oil Stocks, Market Direction, Bitcoin, Minerals, Gold, Silver - Technical Trading <--- Chris Vermeulen & Gareth Soloway weigh in

Breaking News:

OPEC Lifts Production in February

Brian Westenhaus

Brian Westenhaus

Brian is the editor of the popular energy technology site New Energy and Fuel. The site’s mission is to inform, stimulate, amuse and abuse the…

More Info

Premium Content

New Solar Harvesting System Breaks Records

  • New tech is breaking the efficiency records of all existing solar harvesting technologies.
  • University of Houston professor Bo Zhao is responsible for the breakthrough. 
  • his is a strong case for nonreciprocal solar thermophotovoltaics. But they haven’t been designed and engineered yet.

A University of Houston professor is reporting on a new type of solar energy harvesting system called thermophotovoltaics (STPV) that breaks the efficiency record of all existing technologies. And no less important, it clears the way to use solar power 24/7.

Photovoltaic cells which convert sunlight directly into energy have made much progress. Yet with all the research, history and science behind it, there are limits to how much solar power can be harvested and used – as its generation is restricted only to the daylight.

University of Houston professor Bo Zhao is continuing the historic quest, reporting on a new type of solar energy harvesting system that breaks the efficiency record of all existing technologies. And no less important, it clears the way to use solar power 24/7.

Zhao said, “With our architecture, the solar energy harvesting efficiency can be improved to the thermodynamic limit.” Zhao, Kalsi Assistant Professor of mechanical engineering and his doctoral student Sina Jafari Ghalekohneh reported there results in the journal Physical Review Applied. The thermodynamic limit is the absolute maximum theoretically possible conversion efficiency of sunlight into electricity.

How Does it Work?

Traditional solar thermophotovoltaics rely on an intermediate layer to tailor sunlight for better efficiency. The front side of the intermediate layer (the side facing the sun) is designed to absorb all photons coming from the sun. In this way, solar energy is converted to thermal energy of the intermediate layer and elevates the temperature of the intermediate layer.

But the thermodynamic efficiency limit of STPVs, which has long been understood to be the blackbody limit (85.4%), is still far lower than the Landsberg limit (93.3%), the ultimate efficiency limit for solar energy harvesting.

Zhao explained, “In this work, we show that the efficiency deficit is caused by the inevitable back emission of the intermediate layer towards the sun resulting from the reciprocity of the system. We propose nonreciprocal STPV systems that utilize an intermediate layer with nonreciprocal radiative properties. Such a nonreciprocal intermediate layer can substantially suppress its back emission to the sun and funnel more photon flux towards the cell.”

“We show that, with such improvement, the nonreciprocal STPV system can reach the Landsberg limit, and practical STPV systems with single-junction photovoltaic cells can also experience a significant efficiency boost,” he added.

Besides improved efficiency, STPVs promise compactness and dispatchability (electricity that can be programmed on demand based on market needs).

In one important application scenario, STPVs can be coupled with an economical thermal energy storage unit to generate electricity 24/7.

“Our work highlights the great potential of nonreciprocal thermal photonic components in energy applications. The proposed system offers a new pathway to improve the performance of STPV systems significantly. It may pave the way for nonreciprocal systems to be implemented in practical STPV systems currently used in power plants,” said Zhao.

***

As an intellectual exercise this is an elegant work showing where to look for more efficiency. This is a strong case for nonreciprocal solar theromophotovoltaics. But they haven’t been designed and engineered yet.

ADVERTISEMENT

Perhaps this work will trigger some progress. 93.+% is definitely something to keep looking for. And that “economical thermal energy storage unit” will be needing some work as well.

By Brian Westenhaus via New Energy and Fuel

More Top Reads From Oilprice.com:


Download The Free Oilprice App Today

Back to homepage





Leave a comment

Leave a comment




EXXON Mobil -0.35
Open57.81 Trading Vol.6.96M Previous Vol.241.7B
BUY 57.15
Sell 57.00
Oilprice - The No. 1 Source for Oil & Energy News