• 4 minutes Europeans and Americans are beginning to see the results of depending on renewables.
  • 7 minutes Is China Rising or Falling? Has it Enraged the World and Lost its Way? How is their Economy Doing?
  • 13 minutes NordStream2
  • 1 min Monday 9/13 - "High Natural Gas Prices Today Will Send U.S. Production Soaring Next Year" by Irina Slav
  • 11 mins "Here is The Hidden $150 Trillion Agenda Behind The "Crusade" Against Climate Change" - Zero Hedge re: Bank of America REPORT
  • 51 mins California to ban gasoline for lawn mowers, chain saws, leaf blowers, off road equipment, etc.
  • 1 hour GREEN NEW DEAL = BLIZZARD OF LIES
  • 3 days "A Very Predictable Global Energy Crisis" by Irina Slav --- MUST READ
  • 14 hours U.S. : Employers Can Buy Retirement Security for $2.64 an Hour
  • 19 hours Nord Stream - US/German consultations
  • 3 days An Indian Opinion on What is Going on in China
  • 3 days Can Technology Keep Coal Plants Alive and Well?
  • 4 days Succession Planning in Human Resources for Vaccinated Individuals in the Oil & Gas Industry
  • 3 hours Forecasts for Natural Gas
  • 12 hours Australia sues Neoen for lack of power from its Tesla battery
  • 3 days Storage of gas cylinders
  • 4 days Two Good and Plausible Ideas about Saving Water and Redirecting it to Where it is Needed.
Brian Westenhaus

Brian Westenhaus

Brian is the editor of the popular energy technology site New Energy and Fuel. The site’s mission is to inform, stimulate, amuse and abuse the…

More Info

Premium Content

Coal To Liquid Fuel Could Become Much Cheaper

Eindhoven University of Technology researchers have developed iron-based catalysts that substantially reduce operating costs and open the door to capturing the large amounts of CO2 that are generated for the Coal To Liquid Fuel Process (CTL). World energy consumption projections expect coal to stay one of the world’s main energy sources in the coming decades, and a growing share of it will be used in CTL,

The team’s results have been published in the journal Science Advances.

To understand the significance of this achievement, some knowledge of the CTL process is required. The first stage is the conversion of coal to syngas, a mixture of carbon monoxide (CO) and hydrogen (H2). Using the so-called Fischer-Tropsch process, these components are converted to liquid fuels. But before that can be done, the composition of the syngas has to be changed to make sure the right products come out in the end — liquid fuels. So, some of the CO is taken out of the syngas (rejected) by converting it to CO2, in a process called ‘water-gas shift’.

In this chain reaction the researchers tackled a key problem in the Fischer-Tropsch reactor. As in most chemical processing, catalysts are required to enable the reactions. CTL catalysts are mainly iron based. Unfortunately, they convert some 30 percent of the CO to unwanted CO2, a byproduct that in this stage is hard to capture and thereby often released in large volumes, consuming a lot of energy without benefit.

The Beijing and Eindhoven researchers discovered that the CO2 release is caused by the fact that the iron-based catalysts are not pure but consist of several components. They were able to produce a pure form of a specific iron carbide, called epsilon iron carbide, that has a very low CO2 selectivity. In other words, it generates almost no CO2 at all.

Epsilon iron carbide’s existence was already known but until now it had not been stable enough for the harsh Fischer-Tropsch process. The Sino-Dutch research team has now shown that this instability is caused by impurities in the catalyst. The phase-pure epsilon iron carbide they developed is, by contrast, stable and remains functional, even under typical industrial processing conditions of 23 bar and 250 degrees C.

The new catalyst eliminates nearly all CO2 generation in the Fischer-Tropsch reactor. This can reduce the energy needed and the operating costs by roughly 25 million euros per year for a typical CTL plant. The CO2 that was previously released in this stage can now be removed in the preceding water-gas shift stage. That is good news, because it is much easier to capture in this stage. The technology to make this happen is called CCUS (carbon capture, utilization and storage). It has been developed by other parties and is already being applied in several pilot plants.

Related: Russia’s Oil Output Won’t Go Much Higher

The conversion of coal to liquid fuels is especially relevant in coal-rich countries that have to import oil for their supply of liquid fuels, such as China and the U.S. “We are aware that our new technology facilitates the use of coal-derived fossil fuels. However, it is very likely that coal-rich countries will keep on exploiting their coal reserves in the decades ahead. We want to help them do this in the most sustainable way,” said lead researcher professor Emiel Hensen of Eindhoven University of Technology.

The research results are likely to reduce the efforts to develop CTL catalysts based on cobalt. Cobalt based catalysts do not have the CO2 problem, but they are expensive and quickly becoming a scarce resource due to cobalt use in batteries, which account for half of the total cobalt consumption.

Hensen expects that the newly developed catalysts will also play an import role in the future energy and basic chemicals industry. The feedstock will not be coal or gas, but waste and biomass. Syngas will continue to be the central element, as it is also the intermediate product in the conversion of these new feedstocks.

This technology will be very welcome by the fuel consumers and coal industry. Coal is often targeted by the green crowd for CO2, and that’s justified. But this technology may well short circuit the CO2 part of the complaint.

By Brian Westerhaus via New Energy And Fuel

More Top Reads From Oilprice.com:


Download The Free Oilprice App Today

Back to homepage





Leave a comment
  • Bill Simpson on October 28 2018 said:
    Brilliant work. We DON'T want to run short of liquid fuels which would force the global economy to shrink, setting off a financial collapse caused by excess debt everywhere.

Leave a comment




EXXON Mobil -0.35
Open57.81 Trading Vol.6.96M Previous Vol.241.7B
BUY 57.15
Sell 57.00
Oilprice - The No. 1 Source for Oil & Energy News