• 4 minutes WTI Heading for $60
  • 6 minutes OPEC Builds Case For Oil Supply Cut
  • 15 minutes Major News---Bigger Picture
  • 44 mins Good Sign for US Farmers: Soybean Prices Signals US-China Trade Deal Progress
  • 13 hours Starbucks slashing its corporate workforce
  • 4 hours Your idea of oil/gas prices next ten years
  • 7 hours Plastic Myth-Busters
  • 38 mins Here We Go Again: EU Will Hit Back If U.S. Imposes Car Tariffs
  • 6 hours Could EVs Become Cheaper than ICE Cars by 2023?
  • 1 day Solid-State Batteries At Least a Decade Away From Mass Adoption
  • 11 hours what's up with NG?
  • 16 hours Zohr Giant Gas Field Increases Production Six-Fold
  • 1 hour Soybean sale to China down 94%
  • 2 days Big Brother Is Watching You: Chinese ‘Gait Recognition’ Tech IDs People By How They Walk
  • 11 hours Pros and Cons of Coal
  • 12 hours WTI @ 69.33 headed for $70s - $80s end of August

Breaking News:

Crude Build Halts Oil Price Recovery

Alt Text

Why China Can’t Shake Its Coal Dependency

China’s drive to reduce its…

Alt Text

Thermal Coal Prices Are Soaring

With tight supply in key…

Alt Text

The One Nation Returning To Coal

Despite a global push away…

Brian Westenhaus

Brian Westenhaus

Brian is the editor of the popular energy technology site New Energy and Fuel. The site’s mission is to inform, stimulate, amuse and abuse the…

More Info

Trending Discussions

Coal To Liquid Fuel Could Become Much Cheaper

Eindhoven University of Technology researchers have developed iron-based catalysts that substantially reduce operating costs and open the door to capturing the large amounts of CO2 that are generated for the Coal To Liquid Fuel Process (CTL). World energy consumption projections expect coal to stay one of the world’s main energy sources in the coming decades, and a growing share of it will be used in CTL,

The team’s results have been published in the journal Science Advances.

To understand the significance of this achievement, some knowledge of the CTL process is required. The first stage is the conversion of coal to syngas, a mixture of carbon monoxide (CO) and hydrogen (H2). Using the so-called Fischer-Tropsch process, these components are converted to liquid fuels. But before that can be done, the composition of the syngas has to be changed to make sure the right products come out in the end — liquid fuels. So, some of the CO is taken out of the syngas (rejected) by converting it to CO2, in a process called ‘water-gas shift’.

In this chain reaction the researchers tackled a key problem in the Fischer-Tropsch reactor. As in most chemical processing, catalysts are required to enable the reactions. CTL catalysts are mainly iron based. Unfortunately, they convert some 30 percent of the CO to unwanted CO2, a byproduct that in this stage is hard to capture and thereby often released in large volumes, consuming a lot of energy without benefit.

The Beijing and Eindhoven researchers discovered that the CO2 release is caused by the fact that the iron-based catalysts are not pure but consist of several components. They were able to produce a pure form of a specific iron carbide, called epsilon iron carbide, that has a very low CO2 selectivity. In other words, it generates almost no CO2 at all.

Epsilon iron carbide’s existence was already known but until now it had not been stable enough for the harsh Fischer-Tropsch process. The Sino-Dutch research team has now shown that this instability is caused by impurities in the catalyst. The phase-pure epsilon iron carbide they developed is, by contrast, stable and remains functional, even under typical industrial processing conditions of 23 bar and 250 degrees C.

The new catalyst eliminates nearly all CO2 generation in the Fischer-Tropsch reactor. This can reduce the energy needed and the operating costs by roughly 25 million euros per year for a typical CTL plant. The CO2 that was previously released in this stage can now be removed in the preceding water-gas shift stage. That is good news, because it is much easier to capture in this stage. The technology to make this happen is called CCUS (carbon capture, utilization and storage). It has been developed by other parties and is already being applied in several pilot plants.

Related: Russia’s Oil Output Won’t Go Much Higher

The conversion of coal to liquid fuels is especially relevant in coal-rich countries that have to import oil for their supply of liquid fuels, such as China and the U.S. “We are aware that our new technology facilitates the use of coal-derived fossil fuels. However, it is very likely that coal-rich countries will keep on exploiting their coal reserves in the decades ahead. We want to help them do this in the most sustainable way,” said lead researcher professor Emiel Hensen of Eindhoven University of Technology.

The research results are likely to reduce the efforts to develop CTL catalysts based on cobalt. Cobalt based catalysts do not have the CO2 problem, but they are expensive and quickly becoming a scarce resource due to cobalt use in batteries, which account for half of the total cobalt consumption.

Hensen expects that the newly developed catalysts will also play an import role in the future energy and basic chemicals industry. The feedstock will not be coal or gas, but waste and biomass. Syngas will continue to be the central element, as it is also the intermediate product in the conversion of these new feedstocks.

This technology will be very welcome by the fuel consumers and coal industry. Coal is often targeted by the green crowd for CO2, and that’s justified. But this technology may well short circuit the CO2 part of the complaint.

By Brian Westerhaus via New Energy And Fuel

More Top Reads From Oilprice.com:




Back to homepage

Trending Discussions


Leave a comment
  • Bill Simpson on October 28 2018 said:
    Brilliant work. We DON'T want to run short of liquid fuels which would force the global economy to shrink, setting off a financial collapse caused by excess debt everywhere.

Leave a comment




Oilprice - The No. 1 Source for Oil & Energy News