• 3 minutes Shale Oil Fiasco
  • 7 minutes "Leaked" request by some Democrats that they were asking Nancy to coordinate censure instead of impeachment.
  • 12 minutes Trump's China Strategy: Death By a Thousand Paper Cuts
  • 16 minutes Global Debt Worries. How Will This End?
  • 3 mins DUMB IT DOWN-IMPEACHMENT
  • 1 hour Greta named Time Magazine "Person of the Year"
  • 52 mins Everything you think you know about economics is WRONG!
  • 2 hours POTUS Trump signs the HK Bill
  • 19 hours americavchina.com
  • 21 hours WTO is effectively neutered. Trump *already* won the trade war against China and WTO is helpless to intervene
  • 39 mins Forget The Hype, Aramco Shares May be Valued At Zero Next Year
  • 20 hours Democrats through impeachment process helped Trump go out of China deal conundrum. Now Trump can safely postpone deal till after November 2020 elections
  • 1 hour Winter Storms Hitting Continental US
  • 32 mins Aramco Raises $25.6B in World's Biggest IPO
  • 11 hours Can Renewable Natural Gas Compete With Diesel?
Alt Text

UN: Renewables Are Needed Now More Than Ever

The Secretary General of the…

Alt Text

Renewables Can’t Offset Growing Need For Fossil Fuels

Despite soaring renewable energy production,…

Alt Text

The Make Or Break Factor For Electric Vehicles

Range anxiety is the make-or-break…

Irina Slav

Irina Slav

Irina is a writer for Oilprice.com with over a decade of experience writing on the oil and gas industry.

More Info

Premium Content

Are Bionic Cells The Future Of Solar?

A common bacterium that lives in the human gut and can sometimes cause nasty stomach upsets can be used for good, scientists from the University of British Columbia have discovered. In what may well be a first for the solar industry, they genetically engineered a culture of E. coli to make the bacteria produce greater amounts of sun-soaking dye lycopene (the red pigment in tomatoes) and then watched that lycopene degrade and produce an electric current.

Now, from one perspective this is the latest demonstration of the vast range of good uses that bacteria could be put to. From another, it is a cheaper alternative to other ways of harvesting sunlight using bacteria, which basically come down to extracting their sun-soaking pigments.

It sounds kind of cruel if you’re not a bacteria hater: the UBC researchers first genetically modified the microorganisms, then they noticed the pigment degrading, which means it was producing electrons, and they decided to check if the current this degradation produces is meaningful.

To that end, they coated the bacterial culture with a semiconductor and stuck it to a glass surface in a sunny spot. The result: the bacteria produced energy density of 0.686 milliamps per square centimeter. That’s 0.324 milliamps more than previous bacteria-based solar cells, and it was produced more cheaply.

Related: Asia Is Leading The Renewable Energy Race

While the phrase “low cost” is always attractive, it is uncertain at this point what the actual savings would be if the technology could be developed at scale. But what could make this bionic solar cell a hit in the future is the fact that the genetically modified E. coli could soak sunlight just as well under an overcast sky as under a sunny one. This means bionic solar cells could be used in places where the weather conditions are not suitable for synthetic PV panels.

Also, they could potentially be used in low-light environments such as mines. Exploring low-light environments such as mines requires the use of sensors that could be powered with biogenic cells such as the one we have developed,” one of the lead authors of the study, chemical engineer Vikramaditya Yadav, told Digital Trends. He added, however, that the cells that we have developed are a ‘generation one’ device that needs significant improvements and optimization before it can reach the levels of silicon solar cells.

Related: Do Crude Producers Really Want Higher Oil Prices?

One big problem with the current process—which the researchers estimate costs a tenth of the dye extraction methods—is that applying a semiconductor to the bacteria kills them (that’s the cruel bit), so the process of lycopene production cannot be sustained. Yet the scientists are hoping they will be able to find a way to keep the bacteria alive to make the process sustainable.

Scaling the biogenic cells could also be tricky: E. coli’s natural habitats do not include plain glass surfaces in the open air. Yet if the scientists find a way to keep the bugs alive and multiply, this cell could become a real alternative to existing synthetic cells, not least because it has comparable efficiency rates.

By Irina Slav for Oilprice.com

More Top Reads From Oilprice.com:




Download The Free Oilprice App Today

Back to homepage



Leave a comment

Leave a comment




Oilprice - The No. 1 Source for Oil & Energy News
Download on the App Store Get it on Google Play