• 7 hours PDVSA Booted From Caribbean Terminal Over Unpaid Bills
  • 9 hours Russia Warns Ukraine Against Recovering Oil Off The Coast Of Crimea
  • 11 hours Syrian Rebels Relinquish Control Of Major Gas Field
  • 12 hours Schlumberger Warns Of Moderating Investment In North America
  • 13 hours Oil Prices Set For Weekly Loss As Profit Taking Trumps Mideast Tensions
  • 14 hours Energy Regulators Look To Guard Grid From Cyberattacks
  • 16 hours Mexico Says OPEC Has Not Approached It For Deal Extension
  • 17 hours New Video Game Targets Oil Infrastructure
  • 19 hours Shell Restarts Bonny Light Exports
  • 20 hours Russia’s Rosneft To Take Majority In Kurdish Oil Pipeline
  • 1 day Iraq Struggles To Replace Damaged Kirkuk Equipment As Output Falls
  • 1 day British Utility Companies Brace For Major Reforms
  • 1 day Montenegro A ‘Sweet Spot’ Of Untapped Oil, Gas In The Adriatic
  • 2 days Rosneft CEO: Rising U.S. Shale A Downside Risk To Oil Prices
  • 2 days Brazil Could Invite More Bids For Unsold Pre-Salt Oil Blocks
  • 2 days OPEC/Non-OPEC Seek Consensus On Deal Before Nov Summit
  • 2 days London Stock Exchange Boss Defends Push To Win Aramco IPO
  • 2 days Rosneft Signs $400M Deal With Kurdistan
  • 2 days Kinder Morgan Warns About Trans Mountain Delays
  • 2 days India, China, U.S., Complain Of Venezuelan Crude Oil Quality Issues
  • 2 days Kurdish Kirkuk-Ceyhan Crude Oil Flows Plunge To 225,000 Bpd
  • 2 days Russia, Saudis Team Up To Boost Fracking Tech
  • 3 days Conflicting News Spurs Doubt On Aramco IPO
  • 3 days Exxon Starts Production At New Refinery In Texas
  • 3 days Iraq Asks BP To Redevelop Kirkuk Oil Fields
  • 4 days Oil Prices Rise After U.S. API Reports Strong Crude Inventory Draw
  • 4 days Oil Gains Spur Growth In Canada’s Oil Cities
  • 4 days China To Take 5% Of Rosneft’s Output In New Deal
  • 4 days UAE Oil Giant Seeks Partnership For Possible IPO
  • 4 days Planting Trees Could Cut Emissions As Much As Quitting Oil
  • 4 days VW Fails To Secure Critical Commodity For EVs
  • 4 days Enbridge Pipeline Expansion Finally Approved
  • 4 days Iraqi Forces Seize Control Of North Oil Co Fields In Kirkuk
  • 4 days OPEC Oil Deal Compliance Falls To 86%
  • 4 days U.S. Oil Production To Increase in November As Rig Count Falls
  • 5 days Gazprom Neft Unhappy With OPEC-Russia Production Cut Deal
  • 5 days Disputed Venezuelan Vote Could Lead To More Sanctions, Clashes
  • 5 days EU Urges U.S. Congress To Protect Iran Nuclear Deal
  • 5 days Oil Rig Explosion In Louisiana Leaves 7 Injured, 1 Still Missing
  • 5 days Aramco Says No Plans To Shelve IPO
Brian Westenhaus

Brian Westenhaus

Brian is the editor of the popular energy technology site New Energy and Fuel. The site’s mission is to inform, stimulate, amuse and abuse the…

More Info

Increasing the Efficiency of Platinum Use in Fuel Cells

Increasing the Efficiency of Platinum Use in Fuel Cells

Fuel cells are, for some, the nirvana of portable or mobile energy production.  But the problem of a catalyst that tears the hydrogen atom into the parts needed to generate electricity still bedevils the progress to widespread commercial marketability.

The best catalyst for efficiency is platinum, the rare, expensive, and beautiful silvery metal.  Other ideas are in research and some early claims are looking positive, but for now platinum is king.  If platinum is going to stay on top, how will costs be cut and longevity increased?

A research team at the Cornell Energy Materials Center has taken an important step forward with a chemical process that creates platinum-cobalt nanoparticles with a platinum enriched shell that show improved catalytic activity.

The new work also addresses another catalyst problem.  A fuel cell is pretty much a steady state energy production device.  No throttle, instant powerup, power on demand or other customary variances that it would be needed for, particularly electric vehicle use.  The variance is going to need storage batteries or more likely capacitors for power bursts and energy recovery surges.  The sluggish sensation of fuel cells working alone isn’t going to make drivers happy at all.

Héctor Abruña, the E.M. Chamot Professor of Chemistry and Chemical Biology believes the Cornell work. “ . . . could be a real significant improvement. It enhances the catalysis and cuts down the cost by a factor of five.”

Related Article: Revolutionary Improvement Increases Lithium Ion Battery Capacity by 300%

In a hydrogen fuel cell, a catalyst at one electrode cracks hydrogen atoms into their component protons and electrons. The electrons travel through an external circuit to create an electric current to the other electrode, where a second catalyst combines the incoming electrons, free protons and oxygen to form water. In current commercial fuel cells, that catalyst is pure platinum.

Platinum Cobalt Coparticle at Cornell.
Platinum Cobalt Coparticle at Cornell.

The Cornell research team has previously created nanoparticles of a palladium-cobalt alloy coated with a thin layer of platinum that worked like pure platinum at lower cost. Forming the catalyst as nanoparticles – typically about 5 nanometers in diameter and distributed on a carbon support – provides more surface area to react with the fuel.

Abruña explains computer simulations of the catalytic reaction predicted that there should be an increase in catalytic activity if the platinum atoms are pushed a bit together or “strained”.

Deli Wang, a post-doctoral researcher in Abruña’s group, devised a new chemical process to manufacture nanoparticles of a platinum-cobalt alloy that included an annealing (heating) step, where the randomly distributed atoms in the alloy form an orderly crystal structure. Rather than just being jumbled together, the metal atoms arrange themselves in an orderly lattice.

Related Article: New Fuel Cell Catalyst Offers Very Cheap Alternative to Platinum

This innovation is absolutely key – the platinum atoms layered onto these particles line up with the lattice and are pushed closer together than they would be in pure platinum, with the resulting “strain” enhancing the catalytic activity.

Huolin Xin, a graduate student in Muller’s group, used a scanning tunneling electron microscope to confirm the structure.

In preliminary tests the new nanoparticles supported in the lattice showed about three and a half times higher catalytic activity (measured by current flow) than similar particles with a disordered core, and more than 12 times more than pure platinum.

The new catalysts also are more durable.

Fuel cell catalysts lose their effectiveness as platinum atoms are oxidized away or as nanoparticles clump together, decreasing the surface area they can offer to react with fuel.

After 5,000 on-off cycles of a test cell, catalytic activity of the Cornell ordered lattice nanoparticles remained steady, while that of similar cobalt-platinum nanoparticles with a disordered core rapidly fell off.

The ordered structure is more stable, Abruña said. The platinum skin may be bonded more strongly to the ordered core than to the disordered alloy, so it would be less likely to fuse with the platinum on other nanoparticles to cause clumping. “We have not gone beyond 5,000 cycles but the results up to that point look very, very good,” he said.

Along with lead author Abruña, Wang and Xin co-authors include Francis DiSalvo, the John Newman Professor of Chemistry and Chemical Biology, and David Muller, professor of applied and engineering physics and co-director of the Kavli Institute at Cornell for Nanoscale Science.  Their paper, “Structurally Ordered Intermetallic Platinum–Cobalt Core–Shell Nanoparticles with Enhanced Activity and Stability as Oxygen Reduction Electrocatalysts” has been published in Nature Materials.

Lots of claims are being made on solving the fuel cell catalyst problem.  So far no commercial or mass production scale is taking place from the new ideas.  But the platinum fuel cell is known technology in manufacturing and if Abruña is right on a commercial application needing 80% less platinum, without a huge processing cost, fuel cells could find a much larger market.

By. Brian Westenhaus

Source: Making Platinum in Fuel Cells Go Further and Last Longer




Back to homepage


Leave a comment

Leave a comment




Oilprice - The No. 1 Source for Oil & Energy News