• 4 minutes Is $60/Bbl WTI still considered a break even for Shale Oil
  • 7 minutes Oil Price Editorial: Beware Of Saudi Oil Tanker Sabotage Stories
  • 11 minutes Mueller Report Brings Into Focus Obama's Attempted Coup Against Trump
  • 15 minutes Wonders of Shale- Gas,bringing investments and jobs to the US
  • 37 mins Apartheid Is Still There: Post-apartheid South Africa Is World’s Most Unequal Country
  • 4 hours Evil Awakens: Fascist Symbols And Rhetoric On Rise In Italian EU Vote
  • 1 day IMO 2020 could create fierce competition for scarce water resources
  • 4 hours Total nonsense in climate debate
  • 4 hours IRAN makes threats, rattles sabre . . . . U.S. makes threats, rattles sabre . . . . IRAQ steps up and plays the mediator. THIS ALLOWS BOTH SIDES TO "SAVE FACE". Then serious negotiations start.
  • 1 day IMO2020 To scrub or not to scrub
  • 16 hours Theresa May to Step Down
  • 1 day Devastating Sanctions: Iran and Venezuela hurting
  • 7 hours Will Canada drop Liberals, vote in Conservatives?
  • 1 day Magic of Shale: EXPORTS!! Crude Exporters Navigate Gulf Coast Terminal Constraints
  • 8 hours Canada's Uncivil Oil War : 78% of Voters Cite *Energy* as the Top Issue
  • 4 hours Apple Boycott in China
  • 8 hours Trump needs to educate US companies and citizens on Chinese Communist Party and People's Liberation Army. This is real ECONOMIC WARFARE. To understand Chinese warfare read General Sun Tzu's "Art of War" . . . written 500 B.C.
Alt Text

Is This A Game Changer For Drones?

Fuel cell technology could significantly…

Alt Text

Australia’s Newest ‘Clean Energy’ Source

Australia, a top exporter of…

Futurity

Futurity

Futurity covers research news from the top universities in the US, UK, Canada and Australia

More Info

Trending Discussions

New Fuel Cell Catalyst Offers Very Cheap Alternative to Platinum

A new, inexpensive catalyst for hydrogen fuel cells could put platinum out of business, say researchers who’ve developed an alternative out of cobalt, graphene, and cobalt-oxide.

Brown University chemist Shouheng Sun and his students have developed the new material—a graphene sheet covered by cobalt and cobalt-oxide nanoparticles—that can catalyze the oxygen reduction reaction nearly as well as platinum does and is substantially more durable.

The new material “has the best reduction performance of any nonplatinum catalyst,” says Shaojun Guo, postdoctoral researcher in Sun’s lab and lead author of a paper published today in the international edition of Angewandte Chemie.

The oxygen reduction reaction occurs on the cathode side of a hydrogen fuel cell. Oxygen functions as an electron sink, stripping electrons from hydrogen fuel at the anode and creating the electrical pull that keeps the current running through electrical devices powered by the cell.

“The reaction requires a catalyst, and platinum is currently the best one,” says Sun. “But it’s very expensive and has a very limited supply, and that’s why you don’t see a lot of fuel cell use aside from a few special purposes.”

Thus far scientists have been unable to develop a viable alternative. A few researchers, including Sun and Guo, have developed new catalysts that reduce the amount of platinum required, but an effective catalyst that uses no platinum at all remains elusive.

This new graphene-cobalt material is the most promising candidate yet, the researchers say. It is the first catalyst not made from a precious metal that comes close to matching platinum’s properties.
Lab tests performed by Sun and his team showed that the new graphene-cobalt material was a bit slower than platinum in getting the oxygen reduction reaction started, but once the reaction was going, the new material actually reduced oxygen at a faster pace than platinum.

Related Article: Rural Alaska Shows us the Way for Wind Energy Installations

The new catalyst also proved to be more stable, degrading much more slowly than platinum over time. After about 17 hours of testing, the graphene-cobalt catalyst was performing at around 70 percent of its initial capacity. The platinum catalyst the team tested performed at less than 60 percent after the same amount of time.

Cobalt is an abundant metal, readily available at a fraction of what platinum costs. Graphene is a one-atom-thick sheet of carbon atoms arranged in a honeycomb structure. Developed in the last few years, graphene is renowned for its strength, electrical properties, and catalytic potential.

Self-assembly

Often, graphene nanoparticle materials are made by growing nanoparticles directly on the graphene surface. But that process is problematic for making a catalyst, Sun says. “It’s really difficult to control the size, shape, and composition of nanoparticles,” he says.

Sun and his team used a self-assembly method that gave them more control over the material’s properties. First, they dispersed cobalt nanoparticles and graphene in separate solutions.

The two solutions were then combined and pounded with sound waves to make sure they mixed thoroughly. That caused the nanoparticles to attach evenly to the graphene in a single layer, which maximizes the potential of each particle to be involved in the reaction.

Related Article: Why Electric Cars Don’t have a Future

The material was then pulled out of solution using a centrifuge and dried. When exposed to air, outside layers of atomic cobalt on each nanoparticle are oxidized, forming a shell of cobalt-oxide that helps protect the cobalt core.

The researchers could control the thickness of the cobalt-oxide shell by heating the material at 70 degrees Celsius for varying amounts of time. Heating it longer increased the thickness of the shell. This way, they could fine-tune the structure in search of a combination that gives top performance. In this case, they found that a one-nanometer shell of cobalt-oxide optimized catalytic properties.

Sun and his team are optimistic that with more study their material could one day be a suitable replacement for platinum catalysts. “Right now, it’s comparable to platinum in an alkaline medium,” Sun says, “but it’s not ready for use yet. We still need to do more tests.”

Ultimately, Sun says, finding a suitable nonplatinum catalyst is the key to getting fuel cells out of the laboratory phase and into production as power sources for cars and other devices.

By. Kevin Stacey-Brown




Download The Free Oilprice App Today

Back to homepage

Trending Discussions


Leave a comment

Leave a comment




Oilprice - The No. 1 Source for Oil & Energy News