• 5 minutes Rage Without Proof: Maduro Accuses U.S. Official Of Plotting Venezuela Invasion
  • 11 minutes IEA Sees Global Oil Supply Tightening More Quickly In 2019
  • 14 minutes Paris Is Burning Over Climate Change Taxes -- Is America Next?
  • 51 mins Waste-to-Energy Chugging Along
  • 5 hours U.S. Senate Advances Resolution To End Military Support For Saudis In Yemen
  • 5 hours Contradictory: Euro Zone Takes Step To Deeper Integration, Key Issues Unresolved
  • 1 hour Venezuela continues to sink in misery
  • 34 mins Let's Just Block the Sun, Shall We?
  • 2 hours What will the future hold for nations dependent on high oil prices.
  • 17 hours Regular Gas dropped to $2.21 per gallon today
  • 15 hours Zohr Giant Gas Field Increases Production Six-Fold
  • 14 hours No, The U.S. Is Not A Net Exporter Of Crude Oil
  • 10 hours UK Power and loss of power stations
  • 1 day $867 billion farm bill passed
  • 1 day Air-to-Fuels Energy and Cost Calculation
  • 23 hours USGS Announces Largest Continuous Oil Assessment in Texas and New Mexico
  • 11 hours EPA To Roll Back Carbon Rule On New Coal Plants
  • 16 hours Global Economy-Bad Days Are coming
Alt Text

Is The U.S. Ethanol Industry Under Siege?

Last week, Iowa Senator Chuck…

Alt Text

Corn States Win In Fight Against Refiners

The Trump administration has shelved…

Alt Text

The Death Of Algal Biofuel

The biofuel craze may have…

Futurity

Futurity

Futurity covers research news from the top universities in the US, UK, Canada and Australia

More Info

Trending Discussions

Biofuel Breakthrough? Scientists Modify Plants to Store Oil in Leaves

Chubby caterpillars show that scientists have engineered a plant with oily leaves, an advance that could enhance biofuel production and lead to improved food for animals.

The results, published in the current issue of The Plant Cell, show that researchers could use an algae gene involved in oil production to engineer a plant that stores lipids or vegetable oil in its leaves—an uncommon occurrence for most plants.

Traditional biofuel research has focused on improving the oil content of seeds, in part because oil production in seeds occurs naturally. Little research, however, has been done to examine the oil production of leaves and stems, as plants don’t typically store lipids in these tissues.

Christoph Benning, professor of biochemistry and molecular biology at Michigan State University, led a collaborative effort with colleagues from the Great Lakes Bioenergy Research Center (GLBRC).

Related article: Marginal Lands: Unfit for Food Crops, but Perfect for Biofuel Plants

“Many researchers are trying to enhance plants’ energy density, and this is another way of approaching it,” Benning says. “It’s a proof-of-concept that could be used to boost plants’ oil production for biofuel use as well as improve the nutrition levels of animal feed.”

Benning and his colleagues began by identifying five genes from one-celled green algae. From the five, they identified one that, when inserted into Arabidopsis thaliana, successfully boosted oil levels in the plant’s leaf tissue.

To confirm that the improved plants were more nutritious and contained more energy, the research team fed them to caterpillar larvae. The larvae that were fed oily leaves from the enhanced plants gained more weight than worms that ate regular leaves.

For the next phase of the research, Benning and his colleagues will work to enhance oil production in grasses and algae that have economic value. The benefits of this research are worth pursuing, Benning says.

Related article: Four New Developments Leading Canada's Biofuel Revolution

“If oil can be extracted from leaves, stems, and seeds, the potential energy capacity of plants may double,” he says. “Further, if algae can be engineered to continuously produce high levels of oil, rather than only when they are under stress, they can become a viable alternative to traditional agricultural crops.”

Moreover, algae can be grown on poor agricultural land—a big plus in the food vs. fuel debate, he adds.

“These basic research findings are significant in advancing the engineering of oil-producing plants,” says Kenneth Keegstra, GLBRC scientific director and professor of biochemistry and molecular biology.

“They will help write a new chapter on the development of production schemes that will enhance the quantity, quality, and profitability of both traditional and nontraditional crops.”

By. Layne Cameron




Back to homepage

Trending Discussions


Leave a comment

Leave a comment




Oilprice - The No. 1 Source for Oil & Energy News