• 3 minutes e-car sales collapse
  • 6 minutes America Is Exceptional in Its Political Divide
  • 11 minutes Perovskites, a ‘dirt cheap’ alternative to silicon, just got a lot more efficient
  • 23 hours Could Someone Give Me Insights on the Future of Renewable Energy?
  • 2 hours How Far Have We Really Gotten With Alternative Energy
  • 23 hours "What’s In Store For Europe In 2023?" By the CIA (aka RFE/RL as a ruse to deceive readers)
  • 56 mins e-truck insanity
  • 3 days Bankruptcy in the Industry
  • 14 hours Oil Stocks, Market Direction, Bitcoin, Minerals, Gold, Silver - Technical Trading <--- Chris Vermeulen & Gareth Soloway weigh in
  • 4 days The United States produced more crude oil than any nation, at any time.
Oil Price Volatility Soars Amid Geopolitical Uncertainty

Oil Price Volatility Soars Amid Geopolitical Uncertainty

Oil price volatility has climbed…

Weak Diesel Prices Reflect Global Economic Slowdown

Weak Diesel Prices Reflect Global Economic Slowdown

Diesel fuel production has ramped…

Brian Westenhaus

Brian Westenhaus

Brian is the editor of the popular energy technology site New Energy and Fuel. The site’s mission is to inform, stimulate, amuse and abuse the…

More Info

Premium Content

Using Water Pressure at the Bottom of the Ocean to Store Energy

Norwegian research scientists are now working on the concept of storing electricity at the bottom of the sea. The energy will be stored with the help of high water pressure. It’s a new idea invented by a German engineer who has spent much of his professional life working in aerospace technology.

Rainer Schramm, inventor and founder of the company Subhydro AS said, “Imagine opening a hatch in a submarine under water. The water will flow into the submarine with enormous force. It is precisely this energy potential we want to utilize. Many people have launched the idea of storing energy by exploiting the pressure at the seabed, but we are the first in the world to apply a specific patent-pending technology to make this possible.”

Subsea Energy Storage Block Diagram.
Subsea Energy Storage Block Diagram.

Schramm has joined forces with SINTEF, the largest independent research organization in Scandinavia to research the concept. “SINTEF has experts in the fields of energy generation, materials technology and not least offshore and deep-water technology, which means we have all the expertise we need in one place,” he said.

Related article: Fuel Efficiency Boosted by New HydraGen Technology

To use the water pressure at the seabed in practice, the mechanical energy is converted by a reversible pump turbine, as in a normal pumped storage hydroelectric plant.

Schramm explains, “A pumped storage power plant is a hydroelectric plant that can be “charged” up again by pumping the water back to the upper reservoir once it has passed through a turbine. This type of power plant is used as a “battery”, when connected to the power grid.”

In this pumped storage power plant a turbine will be connected to a tank on the seabed at a depth of 400-800 meters. The turbine is fitted with a valve, and when this is opened, water flows in and starts turning the turbine. The turbine drives a generator to produce electricity. One can connect as many tanks as one might wish. In other words, it is the number of water tanks that decides how long the plant can generate electricity, before the energy storage capacity is exhausted.

“When the water tanks are full, the water must be removed from the tanks,” Schramm explains. This is achieved by running the turbine in reverse, so that it functions as a pump. The process consumes energy from the power grid, just as when one charges an ordinary battery. Although a bit more energy is used to empty the water tanks than can be recovered from flooding them, the degree of efficiency of this type of power plant is just as high as that of a conventional, onshore plant. According to Schramm, calculations indicate an electric storage efficiency of approximately 80% per power emptying cycle.

Another advantage of the system is that equipment can be scaled according to users’ requirements, both as regards the turbine size and the number of water tanks. A plant of normal size will produce roughly 300 megawatts for a period of 7-8 hours. This is enough energy to supply just over 200,000 (British measure) households with electricity for the same time.

Schramm said, “We envisage that this type of storage plant will function well in conjunction with, for example, wind farms. At strong wind conditions, excess electricity is sent subsea to pump water out of the storage tanks. In periods with little wind, energy can be obtained from this underwater plant instead. The same applies to solar generation: the pumped storage power station can contribute to constant electricity production at night time when there is no sunshine to run a solar power plant.”

In addition to the number of tanks, the sea depth also determines the effectiveness of the plant: the deeper the equipment is located, the greater is the pressure difference between the sea surface and the seabed, and the more energy is stored in a single tank.

Related article: What Limits Population Growth in a Finite World?

Schramm explained, “This is part of the reason why we want to try out the technology in Norway.” In his native country Germany the sea is too shallow for the system to be profitable, but there are many parts of the world where great water depths are located close inshore, such as the marine areas around Italy, Portugal and Spain, as well as North and South America.

This where SINTEF comes in. One of the challenges is to develop a type of concrete that can be used to cast the water tanks, which are placed on the seabed. Tor Arne Martius-Hammer at SINTEF Building and Infrastructure is an expert on strong, light concrete types.

Martius-Hammer explains the SINTEF work with, “The challenge is to find the optimal balance between strength and cost. If we achieve the goal of creating a concrete that will withstand at least 5 times as high loading as ordinary concrete, we can reduce the wall thickness by 75%. This is a critical factor. We need to reach production and installation costs which make storage of energy economical in relation to the price of electrical energy. One of the solutions SINTEF will work on is reinforcing the concrete with thin steel fibers instead of the normal steel rebar. This will result in a significant simplification of the production process. Concrete is in existence at present which can be used, but our job is to develop a cheaper alternative.”


It all seems elegantly simple to use gravity and pressure to achieve high energy storage efficiency. As the team in Scandinavia is figuring out, it’s much more of an engineering exercise of the extreme.

Eighty percent efficiency look quite attractive. No battery, chemistry problems, or life cycle issues other than wear and tear. The concrete tanks could last indefinably. The physics are quite simple with no problems such as compressing air that would loss energy to thermal loses. One simply needs to be near a deep body of water.

Lets hope the thin steel fibers replacing the normal steel rebar work out great.

By. Brian Westenhaus

Original source: A New Idea Using the Deep Ocean Pressure to Store Energy

Download The Free Oilprice App Today

Back to homepage

Leave a comment
  • J Moszynski on June 03 2013 said:
    great depths, great pressures 2.31 ft = 1 psig @ 1.0 s.g
    Great depths, great maintenance nightmares specifically on rotating machinery, as well as recovering same for repairs. To empty the holding tanks will take great compression pressures and lots of HP. There is no such thing as a perpetual motion machine.Shoving air into a tank to evacuate it after filling will take more horsepower that the amount of electricity it would generate, since compression is less efficient than pumping liquid. Unless, the system is evacuated by the turbine/pump at a slightly higher pressure above equalization pressure of the two areas, the open sea, and the chamber. But still lots of HP. Operating a pump as a turbine generator is always less efficient. 2MM Gallons eualizing, 2 MM gallons pumped back into the holding chambers, lower efficiency higher BHP required for the same quantity, for a net loss. Why not just use a small nuclear reactor mounted on a drill platform, which in reality is not only intrinsicaly safe, but very cheap electricity. Lots of cooling water available.
  • Jamison Jennings on August 13 2014 said:
    It is the same concept as if you diving underwater and your ears pop.There is an action happening.What you have to do is convert that action in to electrical production.
  • S McCartt on August 16 2014 said:
    There's no claim of energy generation, only energy storage. No one is saying it's a perpetual motion machine.
  • Robert Wood on February 22 2015 said:
    Energy in the Universe is produced by enormous massess of stars, quasars etc. Which means pressure. This is the inexhaustible source of energy.

Leave a comment

EXXON Mobil -0.35
Open57.81 Trading Vol.6.96M Previous Vol.241.7B
BUY 57.15
Sell 57.00
Oilprice - The No. 1 Source for Oil & Energy News