• 1 day PDVSA Booted From Caribbean Terminal Over Unpaid Bills
  • 1 day Russia Warns Ukraine Against Recovering Oil Off The Coast Of Crimea
  • 2 days Syrian Rebels Relinquish Control Of Major Gas Field
  • 2 days Schlumberger Warns Of Moderating Investment In North America
  • 2 days Oil Prices Set For Weekly Loss As Profit Taking Trumps Mideast Tensions
  • 2 days Energy Regulators Look To Guard Grid From Cyberattacks
  • 2 days Mexico Says OPEC Has Not Approached It For Deal Extension
  • 2 days New Video Game Targets Oil Infrastructure
  • 2 days Shell Restarts Bonny Light Exports
  • 2 days Russia’s Rosneft To Take Majority In Kurdish Oil Pipeline
  • 2 days Iraq Struggles To Replace Damaged Kirkuk Equipment As Output Falls
  • 2 days British Utility Companies Brace For Major Reforms
  • 3 days Montenegro A ‘Sweet Spot’ Of Untapped Oil, Gas In The Adriatic
  • 3 days Rosneft CEO: Rising U.S. Shale A Downside Risk To Oil Prices
  • 3 days Brazil Could Invite More Bids For Unsold Pre-Salt Oil Blocks
  • 3 days OPEC/Non-OPEC Seek Consensus On Deal Before Nov Summit
  • 3 days London Stock Exchange Boss Defends Push To Win Aramco IPO
  • 3 days Rosneft Signs $400M Deal With Kurdistan
  • 3 days Kinder Morgan Warns About Trans Mountain Delays
  • 3 days India, China, U.S., Complain Of Venezuelan Crude Oil Quality Issues
  • 3 days Kurdish Kirkuk-Ceyhan Crude Oil Flows Plunge To 225,000 Bpd
  • 4 days Russia, Saudis Team Up To Boost Fracking Tech
  • 4 days Conflicting News Spurs Doubt On Aramco IPO
  • 4 days Exxon Starts Production At New Refinery In Texas
  • 4 days Iraq Asks BP To Redevelop Kirkuk Oil Fields
  • 5 days Oil Prices Rise After U.S. API Reports Strong Crude Inventory Draw
  • 5 days Oil Gains Spur Growth In Canada’s Oil Cities
  • 5 days China To Take 5% Of Rosneft’s Output In New Deal
  • 5 days UAE Oil Giant Seeks Partnership For Possible IPO
  • 5 days Planting Trees Could Cut Emissions As Much As Quitting Oil
  • 5 days VW Fails To Secure Critical Commodity For EVs
  • 5 days Enbridge Pipeline Expansion Finally Approved
  • 5 days Iraqi Forces Seize Control Of North Oil Co Fields In Kirkuk
  • 5 days OPEC Oil Deal Compliance Falls To 86%
  • 6 days U.S. Oil Production To Increase in November As Rig Count Falls
  • 6 days Gazprom Neft Unhappy With OPEC-Russia Production Cut Deal
  • 6 days Disputed Venezuelan Vote Could Lead To More Sanctions, Clashes
  • 6 days EU Urges U.S. Congress To Protect Iran Nuclear Deal
  • 6 days Oil Rig Explosion In Louisiana Leaves 7 Injured, 1 Still Missing
  • 6 days Aramco Says No Plans To Shelve IPO
Alt Text

Aggressive OPEC Pushes Oil Prices Up

Oil prices are once again…

Alt Text

Russia And China Continue To Boost Oil Ties

The Russia-China alliance is strengthening…

Alt Text

Are Combustion Engines Reaching Peak Demand?

As countries announce plans to…

Colin Chilcoat

Colin Chilcoat

Colin Chilcoat is a specialist in Eurasian energy affairs and political institutions currently living and working in Chicago. A complete collection of his work can…

More Info

An Emerging Cure For Fracking Wastewater

An Emerging Cure For Fracking Wastewater

As shale plays in the US boom and bust – the rig count is down again – one thing remains relatively unchanged: fracking is a dirty business. That doesn’t mean it can’t improve, however. Low prices have put pressure on the rapid development of tertiary, or enhanced, recovery methods, but greener, more environmentally friendly innovations could soon pay dividends.

Water is the problem, and the scope is huge. Not water in general – on a gallon/MMBtu basis, water consumption for hydraulic fracturing actually ranks below both coal and ethanol production. Instead, what’s left is the issue.

Geology is key, but a typical US wellhead will require more than 3.5 million gallons of water per frack. Up to 60 percent of that water will return from the well as wastewater, or flowback. Last year, roughly 18,200 wells were fracked across the US, leaving tens, possibly hundreds, of billions of gallons of flowback for depuration or disposal.

Managing the flowback and overall water life-cycle is easily a billion dollar business and the process can take several forms. In Montana, North Dakota, and Texas – home to the Bakken, Barnett Shale, Eagle Ford, and Permian Basin formations – nearly 50 percent of all wastewater is stored in surface ponds, where it remains until proper disposal is arranged or it evaporates. Regulations are tightening however, and surface ponds remain a short-term and expensive option with little upside. Related: How Debt Has Caught Up With U.S. Shale

A more permanent solution is deep-well injection, but it’s far from perfect. There are approximately 144,000 oil and gas injection wells in the US with a total capacity to deposit more than 2 billion gallons of briny flowback every day. Over the life of a 20-year hydraulic fracturing well, deep-well injection – including trucking, labor, and water disposal – is estimated to cost $160 million. That figure, more than any uptick in injection-related seismic activity or environmental concern, is driving the search for a more cost-effective disposal and/or remediation solution.

Broadly, the goal is to centralize – or integrate on-site – facilities for the treatment and reuse of wastewater. While a truly viable – and rapidly scalable – solution is not yet at hand, there are several contenders that suggest a breakthrough is just around the corner.

Engineers at the University of Colorado Boulder have developed a new water treatment technique that is appealing to drillers and environmentalists alike. The technology, dubbed microbial capacitive desalination, is in essence a battery – a battery that removes both hydrocarbon contaminants and salt present in the flowback.

First, microbes are introduced into the wastewater, which feed on the organic contaminants and release their inherent energy. The energy is then used to create an electric current between positively and negatively charged electrodes. Once live, the electrodes attract the dissolved salt, trapping it on their surface. It does not end there, however. Besides preparing the wastewater for reuse, the battery also creates a surplus of energy that could be used to run equipment on site. Traditional treatment methods are net users of electricity and not providers. Related: Three Reasons Why US Shale Isn’t Going Anywhere

The technology, organized under the company BioElectric Inc. joins similar innovations – electrocoagulation and electrodialysis to name a few – out of OriginOil, MIT, and a quickly growing number of research organizations around the world. The bigger industry players are also answering the call – Halliburton offers both electric and chemical flowback treatments, and General Electric has long been perfecting its on-site membrane distillation treatment.

So, why aren’t these procedures widespread? In a cost comparison analysis, electrodialysis, induced air flotation, and microbial methods ranked last behind traditional disposal techniques like storage ponds, shallow- and deep-well injection, and commercial removal, despite favorable estimated costs per barrel.

It’s promising work, but capex hurdles still loom too large. Barring stiffer EPA mandates, legacy equipment and long-established practices will continue to spurn the cutting edge.

By Colin Chilcoat of Oilprice.com

More Top Reads From Oilprice.com:




Back to homepage


Leave a comment
  • Lee James on March 10 2015 said:
    Industry floats ideas and processes for clean coal and clean fracking. It gives us the appearance of progress.

Leave a comment




Oilprice - The No. 1 Source for Oil & Energy News