• 4 minutes Energy Armageddon
  • 6 minutes How Far Have We Really Gotten With Alternative Energy
  • 10 minutes Russia Says Europe Will Struggle To Replace Its Oil Products
  • 7 hours GREEN NEW DEAL = BLIZZARD OF LIES
  • 2 days Reality catching up with EV forecasts
  • 4 days "Natural Gas Price Fundamental Daily Forecast – Grinding Toward Summer Highs Despite Huge Short Interest" by James Hyerczyk & REUTERS on NatGas
  • 3 days A Somewhat Realistic View of the Near Future for Electric Vehicles Worldwide
  • 13 days US Oil Independence is a myth and will always be a myth
  • 9 days The Federal Reserve and Money...Aspects which are not widely known
  • 14 days Oil Stocks, Market Direction, Bitcoin, Minerals, Gold, Silver - Technical Trading <--- Chris Vermeulen & Gareth Soloway weigh in
  • 17 days "Biden Is Running U.S. Energy Security Into The Ground" by Irina Slav
  • 17 days *****5 STARS - "The Markets are Rigged" by The Corbett Report
MINING.com

MINING.com

MINING.com is a web-based global mining publication focusing on news and commentary about mining and mineral exploration. The site is a one-stop-shop for mining industry…

More Info

Premium Content

The Not-So-Secret Component In Next-Gen Solar Cells

Materials researchers at Estonia’s Tallinn University of Technology partially substituted copper with silver in solar cells’ absorber material to improve the efficiency of the devices.

In a study published in the Journal of Materials Chemistry A, the scientists explain that their goal is to develop the next generation of thin-film solar cells based on compound semiconductors.

A thin-film solar cell consists of several thin layers of semiconductor materials. For efficient thin-film solar cells, a semiconductor with very good light-absorbing properties must be used as an absorber. Thus, the Estonian researchers created compound semiconductor materials named kesterites (Cu2ZnSn(Se,S)4) which, in addition to excellent light absorption, contain minerals such as copper, zinc, tin, sulphur and selenium. 

ADVERTISEMENT

To produce kesterites, the researchers used a unique monograin powder technology.

“The monograin powder technology we are developing differs from other similar solar cell manufacturing technologies used in the world in terms of its method. Compared to vacuum evaporation or sputtering technologies, which are widely used to produce thin-film structures, the monograin powder technology is less expensive,” senior researcher Marit Kauk-Kuusik said in a media statement.

ADVERTISEMENT

Powder growth technology is the process of heating chemical components in a special chamber furnace at 750 degrees for four days. Thereafter, the mass obtained is washed and sieved in special machines. The synthesized, high-quality microcrystalline, monograin powder is used for the production of solar cells. 

The monograin powder consists of unique microcrystals that form parallel-connected miniature solar cells in a large module. This provides major advantages over the photovoltaic modules in the old-generation silicon-based solar panels. The photovoltaic cells are lightweight, flexible, can be transparent while being environmentally friendlier, less expensive and efficient.

“We have reached the point in our development where partial replacement of copper with silver in kesterite absorber materials can increase efficiency by 2%. This is because copper is highly mobile in nature, causing unstable solar cell efficiency. The replacement of 1% copper with silver improved the efficiency of monograin layer solar cells from 6.6% to 8.7%,” Marit Kauk-Kuusik said.

By Mining.com

More Top Reads From Oilprice.com:


Download The Free Oilprice App Today

Back to homepage


ADVERTISEMENT


ADVERTISEMENT



Leave a comment

Leave a comment




EXXON Mobil -0.35
Open57.81 Trading Vol.6.96M Previous Vol.241.7B
BUY 57.15
Sell 57.00
Oilprice - The No. 1 Source for Oil & Energy News