• 3 minutes e-car sales collapse
  • 6 minutes America Is Exceptional in Its Political Divide
  • 11 minutes Perovskites, a ‘dirt cheap’ alternative to silicon, just got a lot more efficient
  • 1 hour GREEN NEW DEAL = BLIZZARD OF LIES
  • 1 day Could Someone Give Me Insights on the Future of Renewable Energy?
  • 1 day How Far Have We Really Gotten With Alternative Energy
  • 11 hours e-truck insanity
  • 3 days "What’s In Store For Europe In 2023?" By the CIA (aka RFE/RL as a ruse to deceive readers)
  • 6 days Bankruptcy in the Industry
  • 3 days Oil Stocks, Market Direction, Bitcoin, Minerals, Gold, Silver - Technical Trading <--- Chris Vermeulen & Gareth Soloway weigh in
  • 6 days The United States produced more crude oil than any nation, at any time.
Solar Stocks Jump After Fed Keeps Interest Rates Flat

Solar Stocks Jump After Fed Keeps Interest Rates Flat

Solar energy stocks have responded…

AI to Transform Solar Cell Production

AI to Transform Solar Cell Production

Researchers have successfully used AI…

Brian Westenhaus

Brian Westenhaus

Brian is the editor of the popular energy technology site New Energy and Fuel. The site’s mission is to inform, stimulate, amuse and abuse the…

More Info

Premium Content

Chinese Scientists Present Solar Powered Water Harvesting Technology

  • More than 2.2 billion people currently live in water-stressed countries.
  • Researchers from Shanghai Jiao Tong University in China developed a promising new solar-powered atmospheric water harvesting technology.
  • The researchers synthesized a super hygroscopic gel using plant derivatives and hygroscopic salts that was capable of absorbing and retaining an unparalleled amount of water.
Solar power

Researchers from Shanghai Jiao Tong University in China developed a promising new solar-powered atmospheric water harvesting technology that could help provide enough drinking water for people to survive in those difficult, dryland areas.

Their work was published in Applied Physics Reviews, an AIP Publishing journal.

More than 2.2 billion people currently live in water-stressed countries, and the United Nations estimates that 3.5 million die every year from water-related diseases. Because the areas most in need of improved drinking water are also located in some of the sunniest places in the world, there is strong interest in harnessing sunlight to help obtain clean water.

Schematic diagram of the daytime atmospheric water harvesting cycle. Image Credit: Wang Ruzhu. The research reporting paper is not behind a paywall at posting. Click this link.

Lead researcher Ruzhu Wang said, “This atmospheric water harvesting technology can be used to increase the daily water supply needs, such as household drinking water, industrial water, and water for personal hygiene.”

Historically, researchers have faced challenges when injecting salt into hydrogels as the higher salt content reduced the swelling capacity of the hydrogel due to the salting-out effect. This led to salt leakage and the water absorption capacity decreased.

Wang noted, “We were impressed that even when up to 5 grams of salt was injected into 1 gram of polymer, the resulting gel maintained good swelling and salt-trapping properties.”

The researchers synthesized a super hygroscopic gel using plant derivatives and hygroscopic salts that was capable of absorbing and retaining an unparalleled amount of water. One kilogram of dry gel could adsorb 1.18 kilograms of water in arid atmospheric environments and up to 6.4 kilograms in humid atmospheric environments. This hygroscopic gel was simple and inexpensive to prepare and would consequently be suitable for large-scale preparation.

In addition, the team adapted a prototype with desorption and condensation chambers, configured in parallel. They employed a turbofan in the condensation chamber to increase the recovery of desorbed water to more than 90%.

In an outdoor prototype demonstration, the team found it released adsorbed water even in the morning or afternoon when the sun is weak. The system could also achieve simultaneous adsorption and desorption during the daytime.

The team will work to achieve simultaneous adsorption and desorption using renewable energy to maximize daily water yield per unit mass of adsorbent to further optimize the system’s performance for practical applications in water generation.

In addition to daily water production, sorbent materials that harvest atmosphere water could also play an important role in future applications such as dehumidification, agriculture irrigation, and thermal management for electronic devices.

***

Drinking water is in short supply across much of human occupied territory. In an even larger area the need overwhelms watering secondary uses leaving quality of life and economic development out of reach.

ADVERTISEMENT

Using a solar power source blanks the need for a portable powers source such as a fuel or battery.

But most of these ideas die of lack of patient capital or greed. The end uses of scale have very small incomes and don’t usually “invest” in new technology as early adopters.

What is of concern is the cost for the super hygroscopic gel capable of absorbing and retaining an unparalleled amount of water. One wonders about the number of uses and recycle potential.

By Brian Westenhaus via Newenergyandfuel.com

More Top Reads From Oilprice.com:


Download The Free Oilprice App Today

Back to homepage





Leave a comment
  • Dan Scott on December 13 2023 said:
    This process seems beneficial for local hydrogen/ammonia production in arid climates since water is required for production.

Leave a comment




EXXON Mobil -0.35
Open57.81 Trading Vol.6.96M Previous Vol.241.7B
BUY 57.15
Sell 57.00
Oilprice - The No. 1 Source for Oil & Energy News