• 3 minutes e-car sales collapse
  • 6 minutes America Is Exceptional in Its Political Divide
  • 11 minutes Perovskites, a ‘dirt cheap’ alternative to silicon, just got a lot more efficient
  • 18 hours GREEN NEW DEAL = BLIZZARD OF LIES
  • 8 days The United States produced more crude oil than any nation, at any time.
  • 8 hours Could Someone Give Me Insights on the Future of Renewable Energy?
  • 1 hour How Far Have We Really Gotten With Alternative Energy
New Catalyst and Solar Process Produces Low Cost Hydrogen

New Catalyst and Solar Process Produces Low Cost Hydrogen

Small ruthenium particles and a solar-powered…

Brian Westenhaus

Brian Westenhaus

Brian is the editor of the popular energy technology site New Energy and Fuel. The site’s mission is to inform, stimulate, amuse and abuse the…

More Info

Premium Content

Innovative Supply Chain Model Marks A New Era For Hydrogen

  • A new supply chain model for hydrogen transport was developed by a collaborative team from Australia, Singapore, and Germany.
  • The model revealed that exporting 'hydrogen the atom' or 'hydrogen the energy' leads to different supply chain systems.
  • The model suggests that methanol could serve as a promising chemical carrier for exporting renewable energy from Australia at low costs.
Hydrogen

A University of Technology Sydney team of researchers has created a new supply chain model which could empower the international hydrogen renewable energy industry.

Hydrogen has been touted as the clean fuel of the future; it can be extracted from water and produces zero carbon emissions. However, it is currently expensive to transport over long distances, and currently no infrastructure is in place to do so.

The new supply chain model, created by researchers in Australia, Singapore and Germany, successfully guides the development of international transport of hydrogen and its embodied energy.

The full report was recently published behind a a paywall in the peer-reviewed journal, Energy Conversion and Management.

Associate Professor Kaveh Khalilpour, from the University of Technology Sydney (UTS) and lead of the report, said supply chain design is critical for making hydrogen economic.

“We looked at the renewable hydrogen export from Australia to Singapore, Japan, and Germany. Surprisingly, the analysis revealed that it matters whether the goal is to export ‘hydrogen the atom’ or ‘hydrogen the energy’. Each choice leads to a different supply chain system. Therefore, a thorough understanding of the whole system is necessary for correct decision making,” said Associate Professor Khalilpour. “The abundance of renewable energy resources in Australia, as well as its stable economy, means the country can attract investments in building these green value chains in our region and even as far away as Europe.”

Hydrogen is expected to help diversify Australia’s renewable energy resource beyond solar and wind power. This is seen as critical to the country’s energy security, as well as necessary for climate change mitigation.

Professor Reinhard Madlener, co-lead of the project, from RWTH Aachen University, Germany said, “Hydrogen is just an energy carrier, i.e. not a primary energy source, and thus only a means to an end for transporting renewable energy from one place to another. The key business question around the emerging hydrogen economy is whether commodities such as green hydrogen, methanol or ammonia can be exported profitably and competitively also over long distances and across the oceans, thus bringing green energy to other places in the world. If this is so, this will also have major international energy and climate policy implications,”

Professor Iftekhar Karimi, from the National University of Singapore, and co-lead of the project said, “Our model suggests that methanol shows great promise as a chemical carrier for exporting renewable energy from Australia at low costs.”

***

It is very encouraging to see some good sense come into the discussion about hydrogen, its storage and transport.. While the press release is using the word “new”, the connection of hydrogen atoms to carbon and nitrogen has been done by nature for hundreds of millions if not billions of years. These examples are just two of thousands.

Another major plus is that fuel cell tech is already existent for methanol. The technology may have had to go to the back burner due media and political pressure about the carbon content in methanol, but its excellent technology, a liquid fuel, does not require pressurization nor has especially dangerous attributes.

The downside is that the mentioned carriers are low in energy content compared to some heavier fossil fuel products. But that probably wouldn’t be a market killer if the efficiency is high enough.

ADVERTISEMENT

Lets hope that down to earth practical applications can muscle in over the way out there ideas about energy and fuel products.

By Brian Westenhaus via New Energy and Fuel

More Top Reads From Oilprice.com:


Download The Free Oilprice App Today

Back to homepage





Leave a comment

Leave a comment




EXXON Mobil -0.35
Open57.81 Trading Vol.6.96M Previous Vol.241.7B
BUY 57.15
Sell 57.00
Oilprice - The No. 1 Source for Oil & Energy News