• 2 days Shell Oil Trading Head Steps Down After 29 Years
  • 2 days Higher Oil Prices Reduce North American Oil Bankruptcies
  • 2 days Statoil To Boost Exploration Drilling Offshore Norway In 2018
  • 2 days $1.6 Billion Canadian-US Hydropower Project Approved
  • 2 days Venezuela Officially In Default
  • 2 days Iran Prepares To Export LNG To Boost Trade Relations
  • 2 days Keystone Pipeline Leaks 5,000 Barrels Into Farmland
  • 2 days Saudi Oil Minister: Markets Will Not Rebalance By March
  • 3 days Obscure Dutch Firm Wins Venezuelan Oil Block As Debt Tensions Mount
  • 3 days Rosneft Announces Completion Of World’s Longest Well
  • 3 days Ecuador Won’t Ask Exemption From OPEC Oil Production Cuts
  • 3 days Norway’s $1 Trillion Wealth Fund Proposes To Ditch Oil Stocks
  • 3 days Ecuador Seeks To Clear Schlumberger Debt By End-November
  • 3 days Santos Admits It Rejected $7.2B Takeover Bid
  • 3 days U.S. Senate Panel Votes To Open Alaskan Refuge To Drilling
  • 4 days Africa’s Richest Woman Fired From Sonangol
  • 4 days Oil And Gas M&A Deal Appetite Highest Since 2013
  • 4 days Russian Hackers Target British Energy Industry
  • 4 days Venezuela Signs $3.15B Debt Restructuring Deal With Russia
  • 4 days DOJ: Protestors Interfering With Pipeline Construction Will Be Prosecuted
  • 4 days Lower Oil Prices Benefit European Refiners
  • 4 days World’s Biggest Private Equity Firm Raises $1 Billion To Invest In Oil
  • 5 days Oil Prices Tank After API Reports Strong Build In Crude Inventories
  • 5 days Iraq Oil Revenue Not Enough For Sustainable Development
  • 5 days Sudan In Talks With Foreign Oil Firms To Boost Crude Production
  • 5 days Shell: Four Oil Platforms Shut In Gulf Of Mexico After Fire
  • 5 days OPEC To Recruit New Members To Fight Market Imbalance
  • 5 days Green Groups Want Norway’s Arctic Oil Drilling Licenses Canceled
  • 5 days Venezuelan Oil Output Drops To Lowest In 28 Years
  • 6 days Shale Production Rises By 80,000 BPD In Latest EIA Forecasts
  • 6 days GE Considers Selling Baker Hughes Assets
  • 6 days Eni To Address Barents Sea Regulatory Breaches By Dec 11
  • 6 days Saudi Aramco To Invest $300 Billion In Upstream Projects
  • 6 days Aramco To List Shares In Hong Kong ‘For Sure’
  • 6 days BP CEO Sees Venezuela As Oil’s Wildcard
  • 6 days Iran Denies Involvement In Bahrain Oil Pipeline Blast
  • 9 days The Oil Rig Drilling 10 Miles Under The Sea
  • 9 days Baghdad Agrees To Ship Kirkuk Oil To Iran
  • 9 days Another Group Joins Niger Delta Avengers’ Ceasefire Boycott
  • 9 days Italy Looks To Phase Out Coal-Fired Electricity By 2025
Alt Text

Is U.S. Biofuel In Jeopardy?

With the reversal of previous…

Alt Text

New Tech Could Turn Seaweed Into Biofuel

Scientists discovered an unlikely abundant…

Alt Text

New Process Makes Ethanol Sustainable

A new breakthrough has shown…

Science Progress

Science Progress

Science Progress is the premier online journal of progressive science and technology policy from the Center for American Progress. We research, write, and publish articles,…

More Info

New Biofuel Created from Bacteria and Fungus

New Biofuel Created from Bacteria and Fungus

By throwing together a common fungus and a common bacterium, researchers are producing isobutanol — a biofuel that gallon-for-gallon delivers 82 percent of gasoline’s heat energy. The more common ethanol, by contrast, only gets 67 percent of gasoline’s energy, and does more damage to pipelines and engines. And the University of Michigan research team did it using stalks and leaves from corn plants as the raw material.

The fungus in question was Trichoderma reesei, which breaks down the plant materials into sugars. The team used corn plant leftovers in this case, but many other forms of biomass like switchgrass or forestry waste could also serve. The bacterium was Escherichia coli — good old-fashioned E. coli — which then converted those sugars into isobutanol. Another team of researchers at the University of Wisconsin-Madison recently came up with a similar process by studying leaf cutter ants, but their work produced ethanol instead.

The University of Michigan team also got the fungi and bacteria to co-exist peacefully in the same culture and bioreactor. That means fewer cost barriers to commercializing the process: “The capital investment will be much lower, and also the operating cost will be much lower,” Xiaoxia “Nina” Lin, the team’s leader, explained. “So hopefully this will make the whole process much more likely to become economically viable.”

Related article: Algae Creeps Slowly Towards Viability

The big advantage of a cellulosic biofuel like this is twofold. One, because it can be produced from crops that don’t double as a food source, demand for it won’t drive up food prices or contribute to global food insecurity. Traditional corn-based ethanol obviously competes with one of the world’s most basic and widely-used foods, and American and European demand for it has contributed to spiralling food costs and crises in Guatemala and across the developing world. Studies looking into the 2008 food crisis determined that biofuel policies contributed to the problem, compounding the threat of global food insecurity, which in turn helps drive geopolitical upheaval and destabilization.

Two, by driving up demand for food crops, traditional biofuels encourage individuals and countries to clear ever more natural land for agriculture. Grasslands and natural forest store more carbon from the atmosphere than cropland. So the growth in biofuel production, means less natural ecology to absorb carbon, leaving more greenhouse gas in the atmosphere. On top of that, agriculture involves its own carbon emissions from driving tractors and such. So put it all together and traditional biofuel production is largely self-defeating in terms of the final amount of carbon dioxide left in the atmosphere.

Related article: How Much is Too Much Ethanol?

But if a process like this one produces biofuel purely from waste materials — stuff left over from crops we would’ve grown regardless, on land we would’ve cleared regardless — those biofuels will deliver a much bigger net positive when it comes to fighting climate change.

“We’re really excited about this technology,” said Jeremy Minty, another member of the team. “The U.S. has the potential to sustainably produce 1 billion tons or more of biomass annually, enough to produce biofuels that could displace 30 percent or more of our current petroleum production.”

And it’s not just fossil fuels that could be replaced, either. Petrochemicals are also used in making a host of other products, especially plastics. The research team hopes their work could be adapted to replace the petrochemicals used in those processes as well.

By. Jeff Spross




Back to homepage


Leave a comment

Leave a comment




Oilprice - The No. 1 Source for Oil & Energy News