follow us like us subscribe contact us
Loading, please wait

Why Reserves have no Impact on Energy Abundance

By Kurt Cobb | Tue, 30 April 2013 22:30 | 1

Okay, I'm going to give you the shortest course ever in energy abundance: Energy abundance depends entirely on the RATE of energy flow. Let me say it again: Energy abundance depends entirely on the RATE of energy flow.

Now, here is what it does NOT depend on: supposed, but often unverified, fossil fuel reserves in the ground; hypothetical, sketchy, guesstimated, undeveloped, undiscovered resources imagined to be in the ground by governments or by energy companies and often deceptively referred to as "reserves"*; claims about future technological breakthroughs; mere public relations puffery about abundance in the face of record high average oil prices.

Why is the rate of flow the key metric? Because in order to function the global economy depends entirely on continuous, high-quality energy inputs. We cannot shut down the world's electric generating plants for six months or even three months without crashing world society into a state of irretrievable chaos and decline. We cannot shut down the world's shipping fleet for even a few weeks without doing irreparable harm. Modern global society has become like a shark. It either keeps barreling forward or it dies.

Fossil fuels that are actually proven to be in the ground are by definition not currently being used, whatever we may consider their potential. Fossil fuels that are hypothetical and undiscovered by definition cannot be used. Technology is NOT energy. Technology runs ON energy. Energy first, then applied technology. The ancient Romans designed and built small steam engines and used them to animate children's toys. But, the Romans lacked the dense energy sources needed to make steam engines practical as a mode of transportation or of power for manufacturing.

Now, why am I making such a fuss about all this? Because this week we have yet another entry in the ongoing energy misinformation derby, this time from the usually sensible Atlantic Monthly magazine. In fairness, the headline on the magazine's cover which reads "We will never run out of oil" was probably not chosen by the author for it does not really respect the nuances found in the piece which inside has the only slightly less disinformational headline: "What If We Never Run Out of Oil?" The subheading makes the astounding claim that fossil fuels may not be finite making me believe that the editors didn't actually read their own story.

The editors are, of course, trotting out the tired canard that the opposite and urgent claim that we are running out of oil is made by those skeptical about oil abundance. But, the real claim from skeptics is that the RATE OF FLOW may begin to decline sometime in the not-too-distant future. Oil will be with us for a very long time, just not at these levels of production. If the rate of flow for oil declined by half in the next 20 years, we wouldn't be running out of oil at all. We'd still be pumping the same about as we were in 1967, a year of exceptional economic vitality. But, we'd feel the crunch because there are twice as many people on the planet now as there were then. And, the per capita consumption of oil has risen considerably since that year.

Related article: New Wyoming Lithium Deposit could Meet all U.S. Demand

The Atlantic Monthly article does include some dissenting voices. But Charles Mann, the author of the piece, has missed the two most crucial points about the future supply of oil and natural gas. First, new unconventional sources of these hydrocarbons are more difficult and costly to extract than conventional ones. In addition, the unconventional well flows exhibit very steep declines in their rate of production--so steep that in the tight oil fields of Texas and North Dakota drillers must replace about 40 percent of their production PER YEAR just to maintain current output. The decline rates for shale gas are no more encouraging: 79 to 95 percent after three years according to a comprehensive survey of 65,000 oil and gas wells in 31 shale plays. Shale natural gas and tight oil drillers face a task similar to climbing up a down escalator. Each must replace enormous fractions of their current production frequently just to keep production flat. A path to persistently rising global production of oil and gas far into the future cannot be built on production from such fields.

Already, the shale gas production boom in the United States has ceased as natural gas production has been flat since December 2011 despite the more than doubling of natural gas prices from their lows in April 2012. World oil production has been on a bumpy plateau since 2005. Mann seems unaware of stalled natural gas production in the United States, and he failed to take into account the total picture of oil flows. Some 60 percent of current production flows come from aging giant fields representing just 1 percent of the world's fields, and as a group they are in decline. Production from all existing oil fields worldwide is believed to be declining at a rate of about 4 to 5 percent. We are trying to make up that decline from tight oil fields that decline around 10 times faster, and we are only just succeeding for the moment. Failing to understand the centrality of flow rates is such an elementary error that it is hard to believe that the Atlantic Monthly missed it.

But there's more. The affordability of hydrocarbons will also matter greatly. Gail Tverberg has outlined in detail on her blog Our Finite World how the high price of hydrocarbons tends to suppress economic activity which then leads to a downturn that then causes oil and natural gas prices to fall due to falling demand. That fall in prices makes unconventional sources of oil and natural gas uncompetitive leading to a slowdown in their production even as production from conventional sources continues to decline. As prices rise with economic recovery, we begin the same cycle again. This suggests that there is a limit to how much of the modern economy's financial and physical resources can be devoted to extracting energy without causing an economic contraction--something that the shark-like nature of the modern financial economy cannot withstand without the kind of severe repercussions we saw in 2008.

The Atlantic article makes one more misleading claim even as the author admits to a bias formed in 1998 while working on a previous energy article. He didn't correctly foresee the promise of experiments with hydraulic fracturing that led to the shale gas and tight oil production boom. Like a racetrack junky who bet on the wrong horse in the first race, the writer doesn't want to miss the next winner. But, he makes a faulty analogy between the new form of hydraulic fracturing and current pilot projects designed to harvest natural gas from methane hydrates, essentially natural gas trapped in ice crystals, most of which lie in deep ocean sediments. A successful test that produced natural gas from this source off the Japanese coast in 3,000 feet of water and 1,000 feet below the seabed has the energy optimists atwitter with talk of virtually unlimited natural gas supplies.

But, attempts to extract natural gas from methane hydrates should more properly be compared to the search for methods to extract oil profitably from the vast oil shale deposits in the western United States. After more than a century of trying, no one has been able to produce oil commercially from these deposits. It may happen someday at much higher prices and in very limited quantities given all the constraints. Not the least of those constraints is the water necessary to process what is not actually oil, but kerogen, a waxy, long-chain hydrocarbon that requires considerable energy and water to convert into what we call oil. Even the ever optimistic U.S. Energy Information Administration projects that by 2030 these deposits may produce only 140,000 barrels a day of what will essentially be synthetic oil. That compares to current world consumption of around 75 million barrels per day of crude oil plus lease condensate (which is the definition of oil).

As for methane hydrates, researchers have tried for decades to figure out how to extract the methane profitably and without causing the occasional explosion--a hazard encountered by companies drilling for conventional deepwater gas when they hit hydrates on their way to sought-after conventional reservoirs. As with oil shale, there are known methods now for extracting these gaseous hydrocarbons from methane hydrates. The remaining questions for both oil shale and methane hydrates are similar: How high must prices go before extraction of either will be profitable? So far, the answer is higher than what people will pay and therefore what the economy can stand. And, at what rate will we be able to get these resources out? Rate is the crucial question.

Related article: World’s Highest Oil & Gas Salaries Forces Australia’s LNG Industry Offshore

When it comes to oil shale, we know where it is. It's just that it costs so much to extract and process that we are not producing it commercially. When it comes to methane hydrates, however, we do not even know if the deposits are numerous enough or concentrated enough to make substantial commercial production possible. To pin our hopes on this has the makings of dangerously foolish energy policy.

I am not attempting here to address the climate implications of natural gas production from methane hydrates and shale, nor those of oil extraction from tight oil deposits or oil shale (kerogen). Needless to say, if the optimists somehow turned out to be right, burning all these hydrocarbons would lead to almost certain climate catastrophe. But, we are in bad enough shape as it is without compounding inaction on climate change with a misdiagnosis of oil and natural gas supplies.

Despite our best efforts, we have only just been able to keep oil supplies from declining in the last seven years. Despite (possibly exaggerated) claims that we have more oil reserves than ever, we need to remember that the rate of flow, that is, our daily consumption, has grown by a factor of eight from 1950 to the present. And, half of all the oil ever consumed has been consumed since 1985. The available reserves may be large, but they are being consumed at such a colossal rate that supposedly record reserves have been unable to lift that rate appreciably above a plateau that started in 2005. The result has been record average prices for oil worldwide for two years running. Rate is and always will be primary in evaluating our energy wealth.

While natural gas supply worldwide is likely to grow for a time, the cost of this new supply--especially if most of it comes from shale deposits and possibly methane hydrates--will be far higher than the optimists would wish. And, that has the kind of implications cited above for affordability and thus demand.

We seem to have hit a double wall that is both financial and physical when it comes to the flow of oil and natural gas. If we remain ignorant of the first principle of energy abundance, that flow rates are the key metric, then we will be doomed to bad energy policy and other serious consequences that flow from that ignorance.

*Reserves are properly defined as resources that can be extracted from known fields using existing technology and sold profitably at today's prices. Reserves are thus a tiny fraction of "resources," the estimates for which are actually vague, sketchy guesses about the amount of a substance present in the Earth's crust in a given area.


By. Kurt Cobb

Leave a comment

  • laurent on May 04 2013 said:
    We have to remember a very important fact about energy!

    Heat represents nearly half of the world’s final energy consumption.

    According to the International Energy Agency, heat represented 47% of final energy consumption, compared with 17% for electricity, 27% transport and 9% for "non-energy use" in 2009.

    Oil, coal and gas account for more than two-thirds of the fuels used in meeting this significant demand for heat.

    The technology is available to meet most of this demand for heat without fossil fuels. And without changing our way of life.

    - Insulated Houses.
    - Biomass boilers.
    - Solar water heaters.

    In 2010, in the U.S., there were only 13 passive houses (a passive house uses little energy for space heating or cooling).

Leave a comment