• 2 days PDVSA Booted From Caribbean Terminal Over Unpaid Bills
  • 2 days Russia Warns Ukraine Against Recovering Oil Off The Coast Of Crimea
  • 2 days Syrian Rebels Relinquish Control Of Major Gas Field
  • 2 days Schlumberger Warns Of Moderating Investment In North America
  • 2 days Oil Prices Set For Weekly Loss As Profit Taking Trumps Mideast Tensions
  • 2 days Energy Regulators Look To Guard Grid From Cyberattacks
  • 2 days Mexico Says OPEC Has Not Approached It For Deal Extension
  • 2 days New Video Game Targets Oil Infrastructure
  • 2 days Shell Restarts Bonny Light Exports
  • 2 days Russia’s Rosneft To Take Majority In Kurdish Oil Pipeline
  • 3 days Iraq Struggles To Replace Damaged Kirkuk Equipment As Output Falls
  • 3 days British Utility Companies Brace For Major Reforms
  • 3 days Montenegro A ‘Sweet Spot’ Of Untapped Oil, Gas In The Adriatic
  • 3 days Rosneft CEO: Rising U.S. Shale A Downside Risk To Oil Prices
  • 3 days Brazil Could Invite More Bids For Unsold Pre-Salt Oil Blocks
  • 3 days OPEC/Non-OPEC Seek Consensus On Deal Before Nov Summit
  • 3 days London Stock Exchange Boss Defends Push To Win Aramco IPO
  • 3 days Rosneft Signs $400M Deal With Kurdistan
  • 3 days Kinder Morgan Warns About Trans Mountain Delays
  • 4 days India, China, U.S., Complain Of Venezuelan Crude Oil Quality Issues
  • 4 days Kurdish Kirkuk-Ceyhan Crude Oil Flows Plunge To 225,000 Bpd
  • 4 days Russia, Saudis Team Up To Boost Fracking Tech
  • 4 days Conflicting News Spurs Doubt On Aramco IPO
  • 4 days Exxon Starts Production At New Refinery In Texas
  • 4 days Iraq Asks BP To Redevelop Kirkuk Oil Fields
  • 5 days Oil Prices Rise After U.S. API Reports Strong Crude Inventory Draw
  • 5 days Oil Gains Spur Growth In Canada’s Oil Cities
  • 5 days China To Take 5% Of Rosneft’s Output In New Deal
  • 5 days UAE Oil Giant Seeks Partnership For Possible IPO
  • 5 days Planting Trees Could Cut Emissions As Much As Quitting Oil
  • 5 days VW Fails To Secure Critical Commodity For EVs
  • 5 days Enbridge Pipeline Expansion Finally Approved
  • 5 days Iraqi Forces Seize Control Of North Oil Co Fields In Kirkuk
  • 5 days OPEC Oil Deal Compliance Falls To 86%
  • 6 days U.S. Oil Production To Increase in November As Rig Count Falls
  • 6 days Gazprom Neft Unhappy With OPEC-Russia Production Cut Deal
  • 6 days Disputed Venezuelan Vote Could Lead To More Sanctions, Clashes
  • 6 days EU Urges U.S. Congress To Protect Iran Nuclear Deal
  • 6 days Oil Rig Explosion In Louisiana Leaves 7 Injured, 1 Still Missing
  • 6 days Aramco Says No Plans To Shelve IPO

Scientists Improve Efficiency Of Organic Solar Cells

Scientists Improve Efficiency Of Organic Solar Cells

Solar Polymer Cell

Image by North Carolina State University

This is a twofer: Scientists in the United States and Hong Kong have not only discovered the key to improving the efficiency of organic solar cells, but they’ve done so in a way that makes them easy and inexpensive to produce on a commercial scale.

The upshot is that the research has led to an organic – i.e., carbon-based – solar polymer cell that is up to 10.8 percent efficient, meaning that it converts 10.8 of the sunshine it absorbs into electricity. Until now the record efficiency has been 9.8 percent.

Plus, the new solar polymer cells are thin and flexible enough that they can be printed repeatedly on a thin, flexible surface that can be furled like a roll of paper towels.

Related: How A Mistake May Lead To More Efficient Solar Power

Scientists at North Carolina State University carefully mixed a polymer – a heavy molecule created by evaporating its liquid – with a fullerene – a class of roughly spherical carbon molecules. They then added enough of a solvent to the mix to create a liquid and spread a thin layer of it on a flexible.

As the solvent evaporated, the thin layer of polymer-fullerene solidified into hard, evenly distributed “clumps” that are connected to one another by other polymer molecules. Meanwhile, the fullerene in the mixture snaked around the clumps.

Harald Ade, a physicist at NC State, and a postdoctoral researcher, Wei Ma, studied how the neighboring polymers and fullerenes interact – a process known as aggregation – and discovered that the polymer clumps determined the efficiency of an organic solar polymer cell.

Ade and Ma then teamed up with chemists from the Hong Kong University of Science and Technology. Together they discovered that the clumps’ size and aggregation in a solar polymer cell can be adjusted by changing the temperature at which the cells are manufactured.

They also found that the record efficiency of 10.8 percent can be reached only by using many different kinds of fullerenes. Until now, the most efficient organic solar polymer cells have been made using only two kinds of fullerenes. These discoveries led them to a variety of options for testing the cells’ efficiency. It also allowed them to adjust the cells’ thickness to improve production.

Related: Solar Roads Being Developed In The Netherlands

“Once we saw how temperature affected the aggregation and morphology of these solar cells, it allowed the chemists more freedom to play with different chemical compositions in the active layer,” Ade told the NC State News Department.

“[T]hese solar cells could be compatible with existing methods of mass production, like slot die casting and roll-to-roll processing similar to newspaper printing, rather than the more expensive production methods currently in use that are required for thickness control.”

Ade said the research of the two teams should lead to more experimentation that could increase the cells’ efficiency even more, and make them easier and less costly to manufacture. The results of their work were published Nov. 10 in the journal Nature Communications.

By Andy Tully of Oilprice.com

More Top Reads From Oilprice.com:



Join the discussion | Back to homepage

Leave a comment

Leave a comment

Oilprice - The No. 1 Source for Oil & Energy News