• 3 minutes Natural gas is crushing wind and solar power
  • 7 minutes OPEC and Russia could discuss emergency cuts
  • 11 minutes Is Pete Buttigieg emerging as the most likely challenger to Trump?
  • 46 mins So the west is winning, is it? Only if you’re a delusional Trump toady, Mr Pompeo, by Simon Tisdall
  • 1 hour Fight with American ignorance, Part 1: US is a Republic, it is not a Democracy
  • 10 mins Blowout videos
  • 14 hours Question: Why are oil futures so low through 2020?
  • 6 hours Charts of COVID-19 Fatality Rate by Age and Sex
  • 4 hours CDC covid19 coverup?
  • 53 mins Don't sneeze. Coronavirus is a threat to oil markets and global economies
  • 32 mins The Arithmetic Of Fracking
  • 14 hours Shorting Gold
  • 5 hours “The era of cheap & abundant energy is long gone. Money supply & debt have grown faster than real economy. Debt saturation is now a real risk, requiring a global scale reset.”"We are now in new era of expensive unconventional energy
  • 1 day Peak Shale Will Send Oil Prices Sky High
  • 1 day Phase One trade deal, for China it is all about technology war
  • 2 days Step Forward: Trump Says U.S.-China Trade Deal Will Be Signed On January 15
OPEC Won’t Be Rushed By Coronavirus Fears

OPEC Won’t Be Rushed By Coronavirus Fears

Oil markets continue to focus…

Fuels Of The Future Could Be Much More Efficient

Fuels Of The Future Could Be Much More Efficient

You know how combustion works, right? Strike a match on a rough surface, or shoot a spark at a volatile gas. Pfft! You have flame.

But with flame comes soot and other carbon compounds. That’s understandable if the flame is at the tip of a wooden match, because the flame turns the wood into ash. But even burning gas leaves soot. So where does the soot come from?

Researchers at the U.S. Department of Energy’s Lawrence Berkeley National Lab and the University of Hawaii report that they’ve figured out the first step that changes what are known as “gas-phase molecules” into solids.

This knowledge could lead to the development of more efficient fuels of the future, and even more efficient use of traditional fossil fuels with less waste. Their research was published June 20 online in the journal Angewandte Chemie (Applied Chemistry), a weekly, peer-reviewed scientific journal published on behalf of the German Chemical Society.

Musahid Ahmed, scientist in the Chemical Sciences Division at Berkeley Lab, says that for more than three decades, researchers have been constructing computer models in an effort to explain how gas molecules form soot.

Molecules can combine in many different ways to create soot and other carbon emissions. Ahmed’s team focused on one promising theory called hydrogen abstraction-acetylene addition, of HACA, which was developed more than 20 years ago at the University of California-Berkeley.

According to this theory, if a benzene molecule, a ring of six carbon and six hydrogen atoms, is put in a high-temperature, high-pressure environment, it loses one of its hydrogen atoms. This altered ring then attracts acetylene, a two-hydrogen, two-carbon molecule, to link up with the altered benzene molecule like a kind of tail.

Related Article: Breakthrough in Fusion Research Brings New Nuclear Power Source Closer

This acetylene tail would then lose one of its hydrogen atoms. This increasingly changing molecule then attracts a second acetylene molecule, bringing to four the number of carbon atoms in the tail. Next, the tail curls so that its end connects with the original molecular ring, thereby creating the double-ring structure of naphthalene.

As the rings link up and propagate during combustion, they grow virtually unchecked to become the huge, carbon-heavy “macromolecules” of simple soot.

That’s the theory, anyway. To see if it’s correct, Ahmed’s team used a device called a “hot nozzle,” which recreates the pressure and temperature of the combustion environment. It pumped two chemicals, nitrosobenzene and acetylene, through the nozzle at a pressure of about 5.8 pounds per square inch and at a temperature of more than 1,300 degrees Fahrenheit.

The result: Naphthalene, just as the researchers had expected.

Ahmed’s work isn’t done, however. The research still must “unravel the pathways to more complex systems” of carbon residue, said co-researcher Ralf Kaiser, professor of physical chemistry at the University of Hawaii at Manoa. So far, the plan is to use infrared spectroscopy to examine more of the different kinds of molecules generated in later stages of combustion.

By Andy Tully of Oilprice.com



Join the discussion | Back to homepage


Leave a comment

Leave a comment

Oilprice - The No. 1 Source for Oil & Energy News