• 4 minutes Tariffs to derail $83.7 Billion Chinese Investment in West Virginia
  • 9 minutes Battle for Oil Port: East Libya Forces In Full Control At Ras Lanuf
  • 17 minutes Kaplan Says Rising Oil Prices Won't Hurt US Economy
  • 2 hours Saudi Arabia plans to physically cut off Qatar by moat, nuclear waste and military base
  • 1 min Reuters: OPEC Ministers Agree In Principle On 1 Million Barrels Per Day Nominal Output Increase
  • 34 mins Tesla Closing a Dozen Solar Facilities in Nine States
  • 5 mins Could Venezuela become a net oil importer?
  • 1 day Corruption On The Top: Netanyahu's Wife Charged With Misuse of Public Funds for Meals
  • 12 hours Why is permian oil "locked in" when refineries abound?
  • 10 hours Battle for Oil Port: East Libya Forces In Full Control At Ras Lanuf
  • 5 hours Saudi Arabia turns to solar
  • 2 hours EU Leaders Set To Prolong Russia Sanctions Again
  • 14 hours Teapots Cut U.S. Oil Shipments
  • 14 hours Oil prices going down
  • 19 hours Russia's Energy Minister says Oil Prices Balanced at $75, so Wants to Increase OPEC + Russia Oil by 1.5 mbpd
  • 15 hours Hot line, Macron: Phone Calls With Trump Are Like Sausages Best Not To Know What Is Inside
  • 2 hours China’s Plastic Waste Ban Will Leave 111 Million Tons of Trash With Nowhere To Go
  • 1 day U.S. Withdraws From U.N. Human Rights Council
  • 4 hours EVs Could Help Coal Demand
Oil Markets Turn Bearish Ahead Of OPEC Meeting

Oil Markets Turn Bearish Ahead Of OPEC Meeting

Oil prices fell on Tuesday…

Oil Demand Growth Could Start To Soften Soon

Oil Demand Growth Could Start To Soften Soon

Non-OECD markets are one of…

Fuels Of The Future Could Be Much More Efficient

You know how combustion works, right? Strike a match on a rough surface, or shoot a spark at a volatile gas. Pfft! You have flame.

But with flame comes soot and other carbon compounds. That’s understandable if the flame is at the tip of a wooden match, because the flame turns the wood into ash. But even burning gas leaves soot. So where does the soot come from?

Researchers at the U.S. Department of Energy’s Lawrence Berkeley National Lab and the University of Hawaii report that they’ve figured out the first step that changes what are known as “gas-phase molecules” into solids.

This knowledge could lead to the development of more efficient fuels of the future, and even more efficient use of traditional fossil fuels with less waste. Their research was published June 20 online in the journal Angewandte Chemie (Applied Chemistry), a weekly, peer-reviewed scientific journal published on behalf of the German Chemical Society.

Musahid Ahmed, scientist in the Chemical Sciences Division at Berkeley Lab, says that for more than three decades, researchers have been constructing computer models in an effort to explain how gas molecules form soot.

Molecules can combine in many different ways to create soot and other carbon emissions. Ahmed’s team focused on one promising theory called hydrogen abstraction-acetylene addition, of HACA, which was developed more than 20 years ago at the University of California-Berkeley.

According to this theory, if a benzene molecule, a ring of six carbon and six hydrogen atoms, is put in a high-temperature, high-pressure environment, it loses one of its hydrogen atoms. This altered ring then attracts acetylene, a two-hydrogen, two-carbon molecule, to link up with the altered benzene molecule like a kind of tail.

Related Article: Breakthrough in Fusion Research Brings New Nuclear Power Source Closer

This acetylene tail would then lose one of its hydrogen atoms. This increasingly changing molecule then attracts a second acetylene molecule, bringing to four the number of carbon atoms in the tail. Next, the tail curls so that its end connects with the original molecular ring, thereby creating the double-ring structure of naphthalene.

As the rings link up and propagate during combustion, they grow virtually unchecked to become the huge, carbon-heavy “macromolecules” of simple soot.

That’s the theory, anyway. To see if it’s correct, Ahmed’s team used a device called a “hot nozzle,” which recreates the pressure and temperature of the combustion environment. It pumped two chemicals, nitrosobenzene and acetylene, through the nozzle at a pressure of about 5.8 pounds per square inch and at a temperature of more than 1,300 degrees Fahrenheit.

The result: Naphthalene, just as the researchers had expected.

Ahmed’s work isn’t done, however. The research still must “unravel the pathways to more complex systems” of carbon residue, said co-researcher Ralf Kaiser, professor of physical chemistry at the University of Hawaii at Manoa. So far, the plan is to use infrared spectroscopy to examine more of the different kinds of molecules generated in later stages of combustion.

By Andy Tully of Oilprice.com



Join the discussion | Back to homepage

Leave a comment

Leave a comment

Oilprice - The No. 1 Source for Oil & Energy News