• 2 hours ConocoPhillips Sets Price Ceiling For New Projects
  • 3 days Shell Oil Trading Head Steps Down After 29 Years
  • 3 days Higher Oil Prices Reduce North American Oil Bankruptcies
  • 3 days Statoil To Boost Exploration Drilling Offshore Norway In 2018
  • 3 days $1.6 Billion Canadian-US Hydropower Project Approved
  • 3 days Venezuela Officially In Default
  • 3 days Iran Prepares To Export LNG To Boost Trade Relations
  • 3 days Keystone Pipeline Leaks 5,000 Barrels Into Farmland
  • 3 days Saudi Oil Minister: Markets Will Not Rebalance By March
  • 4 days Obscure Dutch Firm Wins Venezuelan Oil Block As Debt Tensions Mount
  • 4 days Rosneft Announces Completion Of World’s Longest Well
  • 4 days Ecuador Won’t Ask Exemption From OPEC Oil Production Cuts
  • 4 days Norway’s $1 Trillion Wealth Fund Proposes To Ditch Oil Stocks
  • 4 days Ecuador Seeks To Clear Schlumberger Debt By End-November
  • 4 days Santos Admits It Rejected $7.2B Takeover Bid
  • 4 days U.S. Senate Panel Votes To Open Alaskan Refuge To Drilling
  • 5 days Africa’s Richest Woman Fired From Sonangol
  • 5 days Oil And Gas M&A Deal Appetite Highest Since 2013
  • 5 days Russian Hackers Target British Energy Industry
  • 5 days Venezuela Signs $3.15B Debt Restructuring Deal With Russia
  • 5 days DOJ: Protestors Interfering With Pipeline Construction Will Be Prosecuted
  • 5 days Lower Oil Prices Benefit European Refiners
  • 5 days World’s Biggest Private Equity Firm Raises $1 Billion To Invest In Oil
  • 6 days Oil Prices Tank After API Reports Strong Build In Crude Inventories
  • 6 days Iraq Oil Revenue Not Enough For Sustainable Development
  • 6 days Sudan In Talks With Foreign Oil Firms To Boost Crude Production
  • 6 days Shell: Four Oil Platforms Shut In Gulf Of Mexico After Fire
  • 6 days OPEC To Recruit New Members To Fight Market Imbalance
  • 6 days Green Groups Want Norway’s Arctic Oil Drilling Licenses Canceled
  • 6 days Venezuelan Oil Output Drops To Lowest In 28 Years
  • 7 days Shale Production Rises By 80,000 BPD In Latest EIA Forecasts
  • 7 days GE Considers Selling Baker Hughes Assets
  • 7 days Eni To Address Barents Sea Regulatory Breaches By Dec 11
  • 7 days Saudi Aramco To Invest $300 Billion In Upstream Projects
  • 7 days Aramco To List Shares In Hong Kong ‘For Sure’
  • 7 days BP CEO Sees Venezuela As Oil’s Wildcard
  • 7 days Iran Denies Involvement In Bahrain Oil Pipeline Blast
  • 10 days The Oil Rig Drilling 10 Miles Under The Sea
  • 10 days Baghdad Agrees To Ship Kirkuk Oil To Iran
  • 10 days Another Group Joins Niger Delta Avengers’ Ceasefire Boycott
The IEA Is Grossly Overestimating Shale Growth

The IEA Is Grossly Overestimating Shale Growth

The IEA’s forecast that U.S.…

Did Venezuela Just Default?

Did Venezuela Just Default?

S&P Global Ratings declared Venezuela…

Emission-free Hydrogen May Now Be Truly Emission-free

Emission-free Hydrogen May Now Be Truly Emission-free

The problem with emission-free hydrogen fuel is that the process of making it is definitely not emission-free.

Hydrogen-powered devices-–cars, mostly--run on hydrogen made from natural gas, a fossil fuel that produces greenhouse gas emissions.

That could be a major consideration for eco-conscious American consumers as more and more cars powered by hydrogen fuel cells come to market.

Not to worry, according to a team of scientists at Stanford University. The researchers have developed a low-cost, emission-free mechanism that uses a 1.5-volt battery to split water into its constituent elements of oxygen and hydrogen.

The team, led by Hongjie Dai, a Stanford professor of chemistry, uses an AAA “penlight” battery to split hydrogen from oxygen by running an electric current through two electrodes, a process called electrolysis. The electrodes are made of inexpensive iron and nickel, not costly catalysts made of precious metals.

“This is the first time anyone has used non-precious metal catalysts to split water at a voltage that low,” Dai said. “It’s quite remarkable.” Dai’s research team reported its findings in the Aug. 22 issue of the journal Nature Communications.

What’s intriguing about hydrogen fuel cell technology is that it reverses the water-splitting process. To produce the electrical energy that powers the car, the cell gradually mixes its load of hydrogen gas with atmospheric oxygen. The only waste is water vapor, not the toxic gases of a combustion engine that relies on gasoline.

Vehicles powered by hydrogen fuel cells are already available for lease in Southern California, and more are on the way. Yet most won’t operate as cleanly as advertised because they’ll use fuel manufactured at plants that isolate hydrogen by combining steam and natural gas, which not only emits toxic carbon dioxide into the environment, but also uses up large amounts of energy.

Splitting water through electrolysis is a clean method of generating hydrogen, but it’s expensive – or at least it was until Dai’s team developed a method using inexpensive metals on its electrodes and demonstrated that the process can be expanded to an industrial scale.

“It’s been a constant pursuit for decades to make low-cost electrocatalysts with high activity and long durability,” Dai said. “When we found out that a nickel-based catalyst is as effective as platinum, it came as a complete surprise.”

Besides being inexpensive, the use of nickel and nickel oxide greatly lowers the voltage needed to split water, which could save billions of dollars in electricity costs for hydrogen producers, according to Stanford graduate student Ming Gong, who discovered the new water-splitter method.

Gong, who co-authored the report, said his next chore is to improve the durability of the water-splitter. “The electrodes are fairly stable, but they do slowly decay over time,” he said. “The current device would probably run for days, but weeks or months would be preferable. That goal is achievable based on my most recent results.”

By Andy Tully of Oilprice.com



Join the discussion | Back to homepage

Leave a comment
  • decent on August 26 2014 said:
    1,5V might be the voltage of battery, but still isn't possible to create energy out of nothing.
    You can't run a car on a penlight battery!

    As I suspect the problem is in effeciency of hydrogen production, unfortunately there is no word in article how efficient exactly production of hydrogen with these electrodes actually is. What are the losses? 50% 25% 10% 1% ?

Leave a comment

Oilprice - The No. 1 Source for Oil & Energy News