• 9 minutes WTI @ 67.50, charts show $62.50 next
  • 11 minutes The EU Loses The Principles On Which It Was Built
  • 19 minutes Batteries Could Be a Small Dotcom-Style Bubble
  • 1 hour Permian already crested the productivity bell curve - downward now to Tier 2 geological locations
  • 4 hours How To Explain 'Truth Isn't Truth' Comment of Rudy Giuliani?
  • 9 hours Saudi PIF In Talks To Invest In Tesla Rival Lucid
  • 7 hours China still to keep Iran oil flowing amid U.S. sanctions
  • 11 hours Japan carmakers admits using falsified emissions data
  • 2 hours Starvation, horror in Venezuela
  • 20 mins Corporations Are Buying More Renewables Than Ever
  • 24 mins Saudi Fund Wants to Take Tesla Private?
  • 8 hours Desperate Call or... Erdogan Says Turkey Will Boycott U.S. Electronics
  • 9 hours Western Canada Select price continues to sink
  • 9 hours China goes against US natural gas
  • 6 hours Are Trump's steel tariffs working? Seems they are!
  • 2 hours The Discount Airline Model Is Coming for Europe’s Railways
Is This A Game Changer For Drones?

Is This A Game Changer For Drones?

Fuel cell technology could significantly…

New Rechargeable Battery Could Accelerate EV Adoption

New Rechargeable Battery Could Accelerate EV Adoption

University of Michigan researchers have…

2,000-Year Old Wind Technology Gets An Update

The ancient Greek mathematician and engineer Heron of Alexandria designed the earliest known wind turbine in the first century AD. For all that’s happened in the ensuing two millennia, his technology hasn’t changed much.

Now, though, a team of Harvard researchers has found a way to update the turbines, which these days are being increasingly used to generate electricity. The blades of the new turbines look like metal, but what you see is merely a sheath over a core of extremely low-tech balsa wood.

The point of using balsa, even today, is that it’s very light yet very stiff, which is ideal for a wind turbine. But although the balsa tree grows quickly, its wood is rare, and like many other trees it’s getting rarer, and therefore more expensive. Fully 95 percent of the wood comes from the forests of Ecuador.

And being a natural product, it’s structure isn’t perfectly geometrical. Variations in its grain can interfere with the ever-increasing need for the blades to operate smoothly and precisely. After all, some turbine blades are more than 80 feet long and have to be virtually maintenance-free to generate electricity without interruption.

In a paper published online in the journal Advanced Materials, the researchers report that they’ve developed cellular composite materials that mimic balsa wood. They are extremely light and extremely stiff and actually appear to be better than balsa for wind turbines.

In fact, the teams from the Harvard School of Engineering and Applied Sciences (SEAS) and the Wyss Institute for Biologically Inspired Engineering say they outperform even the highest-quality polymers and polymer composites now being made by 3-D printers.

Related Article: When the Wind Doesn’t Blow

The Harvard and Wyss researchers used special fiber-reinforced, epoxy-based resins that, when heated, can be molded only once. Then, for the first time, they ran them through a 3-D extrusion printer. Until now, such printers have been used only for the kinds of resins and plastics that aren’t considered suitable for structural applications.

“By moving into new classes of materials like epoxies, we open up new avenues for using 3-D printing to construct lightweight architectures,” says principal investigator Jennifer A. Lewis, the Hansjörg Wyss Professor of Biologically Inspired Engineering at Harvard SEAS. “Essentially, we are broadening the materials palate for 3D printing.”

Lewis said the key to balsa’s light weight and great strength is that the wood is mostly empty space, and what’s not empty is its rigid cell walls: “We've borrowed this design concept and mimicked it in an engineered composite.”

The report says the 3-D printing process can be used to create many other valuable materials with applications in many fields, including the automotive industry, where strong, light materials can help in the design of vehicles with greater fuel efficiency. One estimate says removing 110 pounds from each of the 1 billion cars on the planet could save $40 billion in fuel costs.

By Andy Tully of Oilprice.com



Join the discussion | Back to homepage

Leave a comment
  • Anon on June 30 2014 said:
    Airplane wings are hollow and made with aluminum. This is a well-tested technology. Fiberglass or balsa cannot be recycled at end-of-life, and can be hard to repair, unlike aluminum. And robotics are used routinely to build aircraft wings, whether riveted (Boeing) or welded (Airbus). Stick with what works.

Leave a comment

Oilprice - The No. 1 Source for Oil & Energy News