• 3 minutes e-car sales collapse
  • 6 minutes America Is Exceptional in Its Political Divide
  • 11 minutes Perovskites, a ‘dirt cheap’ alternative to silicon, just got a lot more efficient
  • 51 mins GREEN NEW DEAL = BLIZZARD OF LIES
  • 4 hours How Far Have We Really Gotten With Alternative Energy
  • 6 hours If hydrogen is the answer, you're asking the wrong question
  • 4 days Oil Stocks, Market Direction, Bitcoin, Minerals, Gold, Silver - Technical Trading <--- Chris Vermeulen & Gareth Soloway weigh in
  • 5 days The European Union is exceptional in its political divide. Examples are apparent in Hungary, Slovakia, Sweden, Netherlands, Belarus, Ireland, etc.
  • 18 hours Biden's $2 trillion Plan for Insfrastructure and Jobs
  • 4 days "What’s In Store For Europe In 2023?" By the CIA (aka RFE/RL as a ruse to deceive readers)

2,000-Year Old Wind Technology Gets An Update

The ancient Greek mathematician and engineer Heron of Alexandria designed the earliest known wind turbine in the first century AD. For all that’s happened in the ensuing two millennia, his technology hasn’t changed much.

Now, though, a team of Harvard researchers has found a way to update the turbines, which these days are being increasingly used to generate electricity. The blades of the new turbines look like metal, but what you see is merely a sheath over a core of extremely low-tech balsa wood.

The point of using balsa, even today, is that it’s very light yet very stiff, which is ideal for a wind turbine. But although the balsa tree grows quickly, its wood is rare, and like many other trees it’s getting rarer, and therefore more expensive. Fully 95 percent of the wood comes from the forests of Ecuador.

And being a natural product, it’s structure isn’t perfectly geometrical. Variations in its grain can interfere with the ever-increasing need for the blades to operate smoothly and precisely. After all, some turbine blades are more than 80 feet long and have to be virtually maintenance-free to generate electricity without interruption.

In a paper published online in the journal Advanced Materials, the researchers report that they’ve developed cellular composite materials that mimic balsa wood. They are extremely light and extremely stiff and actually appear to be better than balsa for wind turbines.

In fact, the teams from the Harvard School of Engineering and Applied Sciences (SEAS) and the Wyss Institute for Biologically Inspired Engineering say they outperform even the highest-quality polymers and polymer composites now being made by 3-D printers.

Related Article: When the Wind Doesn’t Blow

The Harvard and Wyss researchers used special fiber-reinforced, epoxy-based resins that, when heated, can be molded only once. Then, for the first time, they ran them through a 3-D extrusion printer. Until now, such printers have been used only for the kinds of resins and plastics that aren’t considered suitable for structural applications.

“By moving into new classes of materials like epoxies, we open up new avenues for using 3-D printing to construct lightweight architectures,” says principal investigator Jennifer A. Lewis, the Hansjörg Wyss Professor of Biologically Inspired Engineering at Harvard SEAS. “Essentially, we are broadening the materials palate for 3D printing.”

Lewis said the key to balsa’s light weight and great strength is that the wood is mostly empty space, and what’s not empty is its rigid cell walls: “We've borrowed this design concept and mimicked it in an engineered composite.”

ADVERTISEMENT

The report says the 3-D printing process can be used to create many other valuable materials with applications in many fields, including the automotive industry, where strong, light materials can help in the design of vehicles with greater fuel efficiency. One estimate says removing 110 pounds from each of the 1 billion cars on the planet could save $40 billion in fuel costs.

By Andy Tully of Oilprice.com



Join the discussion | Back to homepage



Leave a comment
  • Anon on June 30 2014 said:
    Airplane wings are hollow and made with aluminum. This is a well-tested technology. Fiberglass or balsa cannot be recycled at end-of-life, and can be hard to repair, unlike aluminum. And robotics are used routinely to build aircraft wings, whether riveted (Boeing) or welded (Airbus). Stick with what works.

Leave a comment

EXXON Mobil -0.35
Open57.81 Trading Vol.6.96M Previous Vol.241.7B
BUY 57.15
Sell 57.00
Oilprice - The No. 1 Source for Oil & Energy News