• 3 minutes e-car sales collapse
  • 6 minutes America Is Exceptional in Its Political Divide
  • 11 minutes Perovskites, a ‘dirt cheap’ alternative to silicon, just got a lot more efficient
  • 3 days The United States produced more crude oil than any nation, at any time.
  • 9 days e-truck insanity
  • 4 days How Far Have We Really Gotten With Alternative Energy
  • 8 days Oil Stocks, Market Direction, Bitcoin, Minerals, Gold, Silver - Technical Trading <--- Chris Vermeulen & Gareth Soloway weigh in
  • 7 days James Corbett Interviews Irina Slav of OILPRICE.COM - "Burn, Hollywood, Burn!" - The Corbett Report
  • 7 days The European Union is exceptional in its political divide. Examples are apparent in Hungary, Slovakia, Sweden, Netherlands, Belarus, Ireland, etc.
  • 9 days Biden's $2 trillion Plan for Insfrastructure and Jobs
  • 9 days "What’s In Store For Europe In 2023?" By the CIA (aka RFE/RL as a ruse to deceive readers)
  • 12 days Bankruptcy in the Industry
Brian Westenhaus

Brian Westenhaus

Brian is the editor of the popular energy technology site New Energy and Fuel. The site’s mission is to inform, stimulate, amuse and abuse the…

More Info

Premium Content

Research Team Sets New Standard In Aluminum Ion Battery Chemistry

  • The team developed a positive electrode material from an organic redox polymer based on phenothiazine, which has demonstrated a record capacity of 167 milliampere hours per gram (mAh/g), surpassing the capacity of graphite used in conventional batteries.
  • The aluminum-ion batteries are still able to retain 88% of their capacity even after 5,000 charge cycles at a high charge and discharge rate, indicating their potential longevity and efficiency.
  • Given the abundant nature, lower cost, and safer handling of aluminum compared to lithium, this advancement could potentially ease the demand pressure on the lithium market.

A University of Freiburg led team can now offer great progress on aluminum ion battery chemistry. Aluminum ion batteries are seen as a promising alternative to conventional batteries that use scarce and difficult-to-recycle raw materials such as lithium. This is because aluminum is one of the most common elements in the Earth’s crust, is easier to recycle, and is also safer and less expensive than lithium.

The results appeared open access in the journal Energy & Environmental Science.

The schematic diagram of the battery shows the redox process in which the electrode material is oxidized and aluminate anions are deposited. Image Credit: Birgit Esser, University of Freiburg. Click the study report link for a link to a large image download file.

However, the development of such aluminum-ion batteries is still in its infancy, as suitable electrode materials that provide sufficient storage capacity are still lacking. A research team headed by Gauthier Studer and led by Prof. Dr. Birgit Esser of the University of Ulm and Prof. Dr. Ingo Krossing as well as Prof. Dr. Anna Fischer of the University of Freiburg has now developed a positive electrode material consisting of an organic redox polymer based on phenothiazine.

In the experiment, aluminum batteries with this electrode material stored a previously unattained capacity of 167 milliampere hours per gram (mAh/g). The organic redox polymer thus surpasses the capacity of graphite, which has mostly been used as an electrode material in batteries to date.

Electrode material inserts complex aluminum anions

 The electrode material is oxidized during charging of the battery, thereby taking up complex aluminate anions. In this way, the organic redox polymer poly(3-vinyl-N-methylphenothiazine) manages to insert two [AlCl4]− anions reversibly during charging. The researchers used the ionic liquid ethylmethylimidazolium chloride as electrolyte with added aluminum chloride.

Gauthier Studer noted, “The study of aluminum batteries is an exciting field of research with great potential for future energy storage systems, Our focus lies on developing new organic redox-active materials that exhibit high performance and reversible properties. By studying the redox properties of poly(3-vinyl-N-methylphenothiazine) in chloroaluminate-based ionic liquid, we have made a significant breakthrough by demonstrating for the first time a reversible two-electron redox process for a phenothiazine-based electrode material.”

After 5,000 charge cycles at 10 C, the battery retains 88 percent of its capacity

 Poly(3-vinyl-N-methylphenothiazine) deposits the [AlCl4]− anions at potentials of 0.81 and 1.65 volts and provides specific capacities of up to 167 mAh/g. In contrast, the discharge capacity of graphite as electrode material in aluminum batteries is 120 mAh/g. After 5,000 charge cycles, the battery presented by the research team still has 88 percent of its capacity at 10 C, i.e. at a charge and discharge rate of 6 minutes. At a lower C rate, i.e. a longer charge and discharge time, the battery returns unchanged to its original capacities.


Five thousand cycles is an amazing number, and that’s at what seems like a really fast charge and discharge rate.

The operating voltage and capacities are nothing to raise high excitement, but lots of applications could use this technology and take the pressure from the lithium market.


Other than carry along power needs like cell phones, this technology deserves lots more research.

By Brian Westenhaus via New Energy and Fuel

More Top Reads From Oilprice.com:

Download The Free Oilprice App Today

Back to homepage

Leave a comment

Leave a comment

EXXON Mobil -0.35
Open57.81 Trading Vol.6.96M Previous Vol.241.7B
BUY 57.15
Sell 57.00
Oilprice - The No. 1 Source for Oil & Energy News