• 4 minutes China - EU: Xi Says Cooperation Is Mainstream In Their Ties
  • 8 minutes The Mining Industry Has Had It Easy For Far Too Long
  • 11 minutes Lawsuit-Happy Councilor Wants to Take Big Oil to Court
  • 15 minutes U.S. Shale Output may Start Dropping Next Year
  • 4 hours Dutch Populists Shock the EU with Election Victory
  • 1 hour Venezuela Says Russian Troops Land to Service Military Equipment
  • 2 hours Trump to Make Allies Pay More to Host US Bases
  • 9 hours Multi-well Pad Drilling Cost Question
  • 20 hours U.S.-China Trade War Poses Biggest Risk To Global Stability
  • 3 hours Public Companies that attended OPEC "THREAT DINNER" at CERRAWEEK must disclose any risks in their SEC Financial filings.
  • 4 hours 3 Pipes: EPIC 900K, CACTUS II 670K, GREY OAKS 800K
  • 3 hours England Running Out of Water?
  • 2 hours Read: OPEC THREATENED TO KILL US SHALE
  • 2 hours Mexico Demands Spain and the Vatican Apologize to Indigenous People for the Spanish Conquest
  • 1 day One Last Warning For The U.S. Shale Patch
  • 1 day European Parliament demands Nord-Stream-ii pipeline to be Stopped
  • 2 days Modular Nuclear Reactors
Professor Chris Rhodes

Professor Chris Rhodes

Professor Chris Rhodes is a writer and researcher. He studied chemistry at Sussex University, earning both a B.Sc and a Doctoral degree (D.Phil.); rising to…

More Info

Trending Discussions

Laser Fusion Energy Just Took a Big Step Forwards

The UK company AWE and the Rutherford Appleton Laboratory have joined-forces with the US-based National Ignition Facility (NIF) to help provide energy using Inertial Confinement Fusion, in which a pellet of fuel is heated using powerful lasers. Since the late 1950s, UK scientists have been attempting to achieve the fusion of hydrogen nuclei (tritum and deuterium) using magnetic confinement (MCF). The Joint European Torus (JET) is located in Britain, which is the largest such facility in the world and may be regarded as a prototype for the International Thermonuclear Experimental Reactor (ITER) based in France.
So far, the "breakeven point" has not been reached, and the energy consumed by the plasma has yet to yield more energy than it takes to maintain it; moreover, there are problems of instability, meaning that plasmas tend to collapse within fractions of a second when they must be maintained over significant periods if, e.g. they are to be used to provide a constant output of energy as in a power-station of some kind.

An alternative is Inertial confinement fusion (ICF), in which fusion of nuclei is initiated by heating and compressing a fuel target, typically in the form of a pellet containing deuterium and tritium called a hohlraum (hollow space or cavity) using an extremely powerful laser. Energy is delivered from the laser to the target, causing its outer layer to explode, which drives the inner substance of the target inwards, compressing it massively. Shock-waves are also produced that travel inward through the target.

If the shock-waves are intense enough, the fuel at the target centre is heated and compressed to the extent that nuclear fusion can occur. The energy released by the fusion reactions then heats the surrounding fuel, within which atomic nuclei may further begin to fuse. In comparison with "breakeven" in MCF, in ICF a state of "ignition" is sought, in which a self-sustaining chain-reaction is attained that consumes a significant portion of the fuel. The fuel pellets typically contain around 10 milligrams of fuel, and if all of that were consumed it would release the energy equivalent to that from burning a barrel of oil. In reality, only a small proportion of the fuel is "burned". That said, "ignition" would yield far more energy than the breakeven point.

At the NIF it is hoped to have ignition within a couple of years, or far sooner than the carrot-before-the donkey "50 years away" for MCF, although there is much to be done yet. A single shot from the world's most powerful laser at NIF is reported to have released "a million billion neutrons" and for a tiny fraction of a second produced more power than was being consumed in the entire world, although to achieve ignition this would need to be increased a thousand-fold.

A real breakthrough, no doubt. But as with MCF, how long before this technology can be fabricated into actual power stations? There are many nontrivial ancillary challenges too, especially the secondary procedure of actually getting the energy out of the reactor into a useful form, i.e. heat to drive steam-turbines as with all other kinds of thermal power stations, to generate electricity. This is very complex and untested technology compared, say, to coal- and gas-fired or nuclear power plants. Actual fusion power is still at best many decades away and the concept should not be thrown as a red-herring that the world's impending energy crisis has been abated.

Most immediately, what fusion in any of its manifestations does not address is the problem of providing liquid fuels as conventional supplies of oil and gas decline, and it is this which is the greatest and most pressing matter to be dealt with, against a backdrop of mere years not a luxury of decades.

By. Professor Chris Rhodes

Professor Chris Rhodes is a writer and researcher. He studied chemistry at Sussex University, earning both a B.Sc and a Doctoral degree (D.Phil.); rising to become the youngest professor of physical chemistry in the U.K. at the age of 34.
A prolific author, Chris has published more than 400 research and popular science articles (some in national newspapers: The Independent and The Daily Telegraph)
He has recently published his first novel, "University Shambles" was published in April 2009 (Melrose Books).
http://universityshambles.com




Download The Free Oilprice App Today

Back to homepage

Trending Discussions


Leave a comment

Leave a comment




Oilprice - The No. 1 Source for Oil & Energy News