• 2 days PDVSA Booted From Caribbean Terminal Over Unpaid Bills
  • 2 days Russia Warns Ukraine Against Recovering Oil Off The Coast Of Crimea
  • 2 days Syrian Rebels Relinquish Control Of Major Gas Field
  • 2 days Schlumberger Warns Of Moderating Investment In North America
  • 2 days Oil Prices Set For Weekly Loss As Profit Taking Trumps Mideast Tensions
  • 2 days Energy Regulators Look To Guard Grid From Cyberattacks
  • 2 days Mexico Says OPEC Has Not Approached It For Deal Extension
  • 2 days New Video Game Targets Oil Infrastructure
  • 3 days Shell Restarts Bonny Light Exports
  • 3 days Russia’s Rosneft To Take Majority In Kurdish Oil Pipeline
  • 3 days Iraq Struggles To Replace Damaged Kirkuk Equipment As Output Falls
  • 3 days British Utility Companies Brace For Major Reforms
  • 3 days Montenegro A ‘Sweet Spot’ Of Untapped Oil, Gas In The Adriatic
  • 3 days Rosneft CEO: Rising U.S. Shale A Downside Risk To Oil Prices
  • 3 days Brazil Could Invite More Bids For Unsold Pre-Salt Oil Blocks
  • 3 days OPEC/Non-OPEC Seek Consensus On Deal Before Nov Summit
  • 3 days London Stock Exchange Boss Defends Push To Win Aramco IPO
  • 3 days Rosneft Signs $400M Deal With Kurdistan
  • 4 days Kinder Morgan Warns About Trans Mountain Delays
  • 4 days India, China, U.S., Complain Of Venezuelan Crude Oil Quality Issues
  • 4 days Kurdish Kirkuk-Ceyhan Crude Oil Flows Plunge To 225,000 Bpd
  • 4 days Russia, Saudis Team Up To Boost Fracking Tech
  • 4 days Conflicting News Spurs Doubt On Aramco IPO
  • 5 days Exxon Starts Production At New Refinery In Texas
  • 5 days Iraq Asks BP To Redevelop Kirkuk Oil Fields
  • 5 days Oil Prices Rise After U.S. API Reports Strong Crude Inventory Draw
  • 5 days Oil Gains Spur Growth In Canada’s Oil Cities
  • 5 days China To Take 5% Of Rosneft’s Output In New Deal
  • 5 days UAE Oil Giant Seeks Partnership For Possible IPO
  • 5 days Planting Trees Could Cut Emissions As Much As Quitting Oil
  • 5 days VW Fails To Secure Critical Commodity For EVs
  • 5 days Enbridge Pipeline Expansion Finally Approved
  • 6 days Iraqi Forces Seize Control Of North Oil Co Fields In Kirkuk
  • 6 days OPEC Oil Deal Compliance Falls To 86%
  • 6 days U.S. Oil Production To Increase in November As Rig Count Falls
  • 6 days Gazprom Neft Unhappy With OPEC-Russia Production Cut Deal
  • 6 days Disputed Venezuelan Vote Could Lead To More Sanctions, Clashes
  • 6 days EU Urges U.S. Congress To Protect Iran Nuclear Deal
  • 7 days Oil Rig Explosion In Louisiana Leaves 7 Injured, 1 Still Missing
  • 7 days Aramco Says No Plans To Shelve IPO
Alt Text

Why U.S. Crude Exports Are Booming

U.S. crude oil exports are…

Alt Text

Oil Quality Issues Could Bankrupt Venezuela

Falling Venezuelan oil quality could…

Alt Text

Aggressive OPEC Pushes Oil Prices Up

Oil prices are once again…

Professor Chris Rhodes

Professor Chris Rhodes

Professor Chris Rhodes is a writer and researcher. He studied chemistry at Sussex University, earning both a B.Sc and a Doctoral degree (D.Phil.); rising to…

More Info

Laser Fusion Energy Just Took a Big Step Forwards

Laser Fusion Energy Just Took a Big Step Forwards

The UK company AWE and the Rutherford Appleton Laboratory have joined-forces with the US-based National Ignition Facility (NIF) to help provide energy using Inertial Confinement Fusion, in which a pellet of fuel is heated using powerful lasers. Since the late 1950s, UK scientists have been attempting to achieve the fusion of hydrogen nuclei (tritum and deuterium) using magnetic confinement (MCF). The Joint European Torus (JET) is located in Britain, which is the largest such facility in the world and may be regarded as a prototype for the International Thermonuclear Experimental Reactor (ITER) based in France.
So far, the "breakeven point" has not been reached, and the energy consumed by the plasma has yet to yield more energy than it takes to maintain it; moreover, there are problems of instability, meaning that plasmas tend to collapse within fractions of a second when they must be maintained over significant periods if, e.g. they are to be used to provide a constant output of energy as in a power-station of some kind.

An alternative is Inertial confinement fusion (ICF), in which fusion of nuclei is initiated by heating and compressing a fuel target, typically in the form of a pellet containing deuterium and tritium called a hohlraum (hollow space or cavity) using an extremely powerful laser. Energy is delivered from the laser to the target, causing its outer layer to explode, which drives the inner substance of the target inwards, compressing it massively. Shock-waves are also produced that travel inward through the target.

If the shock-waves are intense enough, the fuel at the target centre is heated and compressed to the extent that nuclear fusion can occur. The energy released by the fusion reactions then heats the surrounding fuel, within which atomic nuclei may further begin to fuse. In comparison with "breakeven" in MCF, in ICF a state of "ignition" is sought, in which a self-sustaining chain-reaction is attained that consumes a significant portion of the fuel. The fuel pellets typically contain around 10 milligrams of fuel, and if all of that were consumed it would release the energy equivalent to that from burning a barrel of oil. In reality, only a small proportion of the fuel is "burned". That said, "ignition" would yield far more energy than the breakeven point.

At the NIF it is hoped to have ignition within a couple of years, or far sooner than the carrot-before-the donkey "50 years away" for MCF, although there is much to be done yet. A single shot from the world's most powerful laser at NIF is reported to have released "a million billion neutrons" and for a tiny fraction of a second produced more power than was being consumed in the entire world, although to achieve ignition this would need to be increased a thousand-fold.

A real breakthrough, no doubt. But as with MCF, how long before this technology can be fabricated into actual power stations? There are many nontrivial ancillary challenges too, especially the secondary procedure of actually getting the energy out of the reactor into a useful form, i.e. heat to drive steam-turbines as with all other kinds of thermal power stations, to generate electricity. This is very complex and untested technology compared, say, to coal- and gas-fired or nuclear power plants. Actual fusion power is still at best many decades away and the concept should not be thrown as a red-herring that the world's impending energy crisis has been abated.

Most immediately, what fusion in any of its manifestations does not address is the problem of providing liquid fuels as conventional supplies of oil and gas decline, and it is this which is the greatest and most pressing matter to be dealt with, against a backdrop of mere years not a luxury of decades.

By. Professor Chris Rhodes

Professor Chris Rhodes is a writer and researcher. He studied chemistry at Sussex University, earning both a B.Sc and a Doctoral degree (D.Phil.); rising to become the youngest professor of physical chemistry in the U.K. at the age of 34.
A prolific author, Chris has published more than 400 research and popular science articles (some in national newspapers: The Independent and The Daily Telegraph)
He has recently published his first novel, "University Shambles" was published in April 2009 (Melrose Books).
http://universityshambles.com




Back to homepage


Leave a comment

Leave a comment




Oilprice - The No. 1 Source for Oil & Energy News