• 2 days U.S. On Track To Unseat Saudi Arabia As No.2 Oil Producer In the World
  • 2 days Senior Interior Dept. Official Says Florida Still On Trump’s Draft Drilling Plan
  • 3 days Schlumberger Optimistic In 2018 For Oilfield Services Businesses
  • 3 days Only 1/3 Of Oil Patch Jobs To Return To Canada After Downturn Ends
  • 3 days Statoil, YPF Finalize Joint Vaca Muerta Development Deal
  • 3 days TransCanada Boasts Long-Term Commitments For Keystone XL
  • 3 days Nigeria Files Suit Against JP Morgan Over Oil Field Sale
  • 3 days Chinese Oil Ships Found Violating UN Sanctions On North Korea
  • 3 days Oil Slick From Iranian Tanker Explosion Is Now The Size Of Paris
  • 4 days Nigeria Approves Petroleum Industry Bill After 17 Long Years
  • 4 days Venezuelan Output Drops To 28-Year Low In 2017
  • 4 days OPEC Revises Up Non-OPEC Production Estimates For 2018
  • 4 days Iraq Ready To Sign Deal With BP For Kirkuk Fields
  • 4 days Kinder Morgan Delays Trans Mountain Launch Again
  • 4 days Shell Inks Another Solar Deal
  • 5 days API Reports Seventh Large Crude Draw In Seven Weeks
  • 5 days Maduro’s Advisors Recommend Selling Petro At Steep 60% Discount
  • 5 days EIA: Shale Oil Output To Rise By 1.8 Million Bpd Through Q1 2019
  • 5 days IEA: Don’t Expect Much Oil From Arctic National Wildlife Refuge Before 2030
  • 5 days Minister Says Norway Must Prepare For Arctic Oil Race With Russia
  • 5 days Eight Years Late—UK Hinkley Point C To Be In Service By 2025
  • 5 days Sunk Iranian Oil Tanker Leave Behind Two Slicks
  • 5 days Saudi Arabia Shuns UBS, BofA As Aramco IPO Coordinators
  • 5 days WCS-WTI Spread Narrows As Exports-By-Rail Pick Up
  • 5 days Norway Grants Record 75 New Offshore Exploration Leases
  • 6 days China’s Growing Appetite For Renewables
  • 6 days Chevron To Resume Drilling In Kurdistan
  • 6 days India Boosts Oil, Gas Resource Estimate Ahead Of Bidding Round
  • 6 days India’s Reliance Boosts Export Refinery Capacity By 30%
  • 6 days Nigeria Among Worst Performers In Electricity Supply
  • 6 days ELN Attacks Another Colombian Pipeline As Ceasefire Ceases
  • 6 days Shell Buys 43.8% Stake In Silicon Ranch Solar
  • 7 days Saudis To Award Nuclear Power Contracts In December
  • 7 days Shell Approves Its First North Sea Oil Project In Six Years
  • 7 days China Unlikely To Maintain Record Oil Product Exports
  • 7 days Australia Solar Power Additions Hit Record In 2017
  • 7 days Morocco Prepares $4.6B Gas Project Tender
  • 7 days Iranian Oil Tanker Sinks After Second Explosion
  • 9 days Russia To Discuss Possible Exit From OPEC Deal
  • 9 days Iranian Oil Tanker Drifts Into Japanese Waters As Fires Rage On
Alt Text

The OPEC Deal May End In June

Oil prices have rallied above…

Alt Text

This U.S. Lab Could Help Saudis Boost Crude Demand

Saudi Aramco quietly invested in…

Alt Text

Iraq Is Troubling The Oil Majors

Oil majors are divided on…

Brian Westenhaus

Brian Westenhaus

Brian is the editor of the popular energy technology site New Energy and Fuel. The site’s mission is to inform, stimulate, amuse and abuse the…

More Info

Energy Breakthrough: One Step Closer to Extracting Hydrogen From Water

Energy Breakthrough: One Step Closer to Extracting Hydrogen From Water

A research team at Ecole Polytechnique Fédérale de Lausanne (EPFL) in Switzerland has announced they have come upon a new catalyst for electrolysis to split hydrogen out of water. In a serendipitous moment the team led by Xile Hu made this discovery during an electrochemical experiment.  Hu said, “It’s a perfect illustration of the famous serendipity principle in fundamental research. Thanks to this unexpected result, we’ve revealed a unique phenomenon.” Being alert has rewards when lightning strikes, thanks to Professor Hu and his group the new hydrogen catalyst has been found.

Splitting hydrogen is an energy expensive process.  For industrial use most hydrogen is extracted using heat for the energy and sources such as natural gas with more easily cracked apart molecular bonds.  Cheap free hydrogen is a dream of energy nirvana for many, but as a practical matter having cheap hydrogen sources would have a basic cost savings across a wide swath of industrial production.  It’s an important breakthrough, and how low the operating costs get are important data.

Professor Hu’s team discovered that a molybdenum-based catalyst allows hydrogen production at room temperature, and is inexpensive and efficient. EPFL has already started an international patent filing based on the discovery.

The team, Daniel Merki, Stéphane Fierro, Heron Vrubel and Xile Hu has published the paper Amorphous Molybdenum Sulfide Films as Catalysts for Electrochemical Hydrogen Production in Water in the journal Chemical Science.

The background is water is composed of hydrogen and oxygen. The water molecule can be cracked apart from flowing an electrical current between electrodes in the process known as electrolysis. As this is a slow and energy consuming reaction, platinum is generally used as a catalyst to improve the production rate. But platinum is a dreadfully expensive material that has tripled in price over the last decade.

Now EPFL scientists have shown that abundant and commercially available amorphous molybdenum sulphides are efficient catalysts and hydrogen production cost can be significantly lowered.  That’s a grand statement yet the press release isn’t conveniently clear on making a comparison.  What is clear is 15 mA cm?2 at ? = 200 mV) will get the job done.  This is not a lot of power and someone will kick in the comparative numbers.

The other significant benefit is the catalysts are stable and compatible with acidic, neutral or basic conditions of the water and the rate of the hydrogen production is faster than other catalysts of the similar price.

The discovery opens up some interesting possibilities for industrial applications. Plus it could offer a tool in the area of solar energy storage.

The catch is as with all the water splitting technologies is the hydrogen gas bubbles out along with the oxygen making oxyhydrogen gas also known as Browns Gas, a ready to ignite fuel mixture.  Getting the hydrogen and oxygen separated without any possible ignition is the next step to useful electrolysis of water beyond a process that reignites the oxyhydrogen gas for the heat and pressure gain.

Its quite a breakthrough, the dam holding up hydrogen production has a trickle over the top now, a hint that splitting water is an idea that with more research might get to a lower cost industrial scale.  Some engineers are already calculating if money can be saved, and the independent experimenters are likely thrilled to get an improvement over the popular stainless steel plate method.

The EPFL team has made the breakthrough.  It has certainly set off a new round exploration.  We’re one step closer to economical hydrogen production from water.

By. Brian Westenhaus

Source: A New Way to Produce Hydrogen




Back to homepage


Leave a comment
  • Anonymous on April 21 2011 said:
    sorry but this is NOT original. the university of valencia in spain had a molybenum sulphur catalyst for the same purpose years ago. see keelynet or google.

Leave a comment




Oilprice - The No. 1 Source for Oil & Energy News