• 3 minutes e-car sales collapse
  • 6 minutes America Is Exceptional in Its Political Divide
  • 11 minutes Perovskites, a ‘dirt cheap’ alternative to silicon, just got a lot more efficient
  • 14 hours GREEN NEW DEAL = BLIZZARD OF LIES
  • 4 days Does Toyota Know Something That We Don’t?
  • 4 days World could get rid of Putin and Russia but nobody is bold enough
  • 2 hours America should go after China but it should be done in a wise way.
  • 7 days OPINION: Putin’s Genocidal Myth A scholarly treatise on the thousands of years of Ukrainian history. RCW
  • 6 days China is using Chinese Names of Cities on their Border with Russia.
  • 7 days Russian Officials Voice Concerns About Chinese-Funded Rail Line
  • 7 days CHINA Economy IMPLODING - Fastest Price Fall in 14 Years & Stock Market Crashes to 5 Year Low
  • 6 days CHINA Economy Disaster - Employee Shortages, Retirement Age, Birth Rate & Ageing Population
  • 7 days Putin and Xi Bet on the Global South
  • 7 days "(Another) Putin Critic 'Falls' Out Of Window, Dies"
  • 8 days United States LNG Exports Reach Third Place
  • 8 days Biden's $2 trillion Plan for Insfrastructure and Jobs
Brian Westenhaus

Brian Westenhaus

Brian is the editor of the popular energy technology site New Energy and Fuel. The site’s mission is to inform, stimulate, amuse and abuse the…

More Info

Premium Content

Cost-Effective Catalyst To Supercharge Green Hydrogen Production

  • The catalyst, primarily made of cheaper cobalt, replaces costly iridium in Proton Exchange Membrane (PEM) electrolyzers.
  • Giner Inc. tested the catalyst under industrial conditions, noting its superior performance and durability.
  • This innovation supports the DOE's Hydrogen Energy Earthshot initiative, aiming to drastically reduce green hydrogen production costs.

An Argonne National Laboratory team has developed a new catalyst composed of elements abundant in the Earth. It could make possible the low-cost and energy-efficient production of hydrogen for use in transportation and industrial applications.

A multi-institutional team led by the U.S. Department of Energy’s (DOE) Argonne National Laboratory has developed a low-cost catalyst for a process that yields clean hydrogen from water. Other contributors include DOE’s Sandia National Laboratories and Lawrence Berkeley National Laboratory, as well as Giner Inc.

The results outlining research have been published in Science.

“A process called electrolysis produces hydrogen and oxygen from water and has been around for more than a century,” said Di-Jia Liu, senior chemist at Argonne. He also holds a joint appointment in the Pritzker School of Molecular Engineering at the University of Chicago.

Proton exchange membrane (PEM) electrolyzers represent a new generation of technology for this process. They can split water into hydrogen and oxygen with higher efficiency at near room temperature. The reduced energy demand makes them an ideal choice for producing clean hydrogen by using renewable but intermittent sources, such as solar and wind.

This electrolyzer runs with separate catalysts for each of its electrodes (cathode and anode). The cathode catalyst yields hydrogen, while the anode catalyst forms oxygen. A problem is that the anode catalyst uses iridium, which has a current market price of around $5,000 per ounce. The lack of supply and high cost of iridium pose a major barrier for widespread adoption of PEM electrolyzers.

The main ingredient in the new catalyst is cobalt, which is substantially cheaper than iridium. “We sought to develop a low-cost anode catalyst in a PEM electrolyzer that generates hydrogen at high throughput while consuming minimal energy,” Liu said. “By using the cobalt-based catalyst prepared by our method, one could remove the main bottleneck of cost to producing clean hydrogen in an electrolyzer.”

Giner Inc., a leading research and development company working toward commercialization of electrolyzers and fuel cells, evaluated the new catalyst using its PEM electrolyzer test stations under industrial operating conditions. The performance and durability far exceeded that of competitors’ catalysts.

Important to further advancing the catalyst performance is understanding the reaction mechanism at the atomic scale under electrolyzer operating conditions. The team deciphered critical structural changes that occur in the catalyst under operating conditions by using X-ray analyses at the Advanced Photon Source (APS) at Argonne. They also identified key catalyst features using electron microscopy at Sandia Labs and at Argonne’s Center for Nanoscale Materials (CNM). The APS and CNM are both DOE Office of Science user facilities.

“We imaged the atomic structure on the surface of the new catalyst at various stages of preparation,” said Jianguo Wen, an Argonne materials scientist.

In addition, computational modeling at Berkeley Lab revealed important insights into the catalyst’s durability under reaction conditions.

The team’s achievement is a step forward in DOE’s Hydrogen Energy Earthshot initiative, which mimics the U.S. space program’s “Moon Shot” of the 1960s. Its ambitious goal is to lower the cost for green hydrogen production to one dollar per kilogram in a decade. Production of green hydrogen at that cost could reshape the nation’s economy. Applications include the electric grid, manufacturing, transportation and residential and commercial heating.

“More generally, our results establish a promising path forward in replacing catalysts made from expensive precious metals with elements that are much less expensive and more abundant,” Liu noted.

ADVERTISEMENT

In addition to Liu, Argonne authors are Lina Chong (now at Shanghai Jiao Tong University), Jianguo Wen, Haiping Xu, A. Jeremy Kropf, Wenqian Xu and Xiao-Min Lin. Authors from Berkeley Lab include Guoping Gao, Haixia Li and Ling-Wang Wang. The author from Sandia Labs is Joshua D. Sugar. Contributors Zach Green and Hui Xu are from Giner Inc.

By Brian Westenhaus via New Energy and Fuel

More Top Reads From Oilprice.com:


Download The Free Oilprice App Today

Back to homepage





Leave a comment
  • Vernon Brechin on August 17 2023 said:
    Quoting from this article "The team’s achievement is a step forward in DOE’s Hydrogen Energy Earthshot initiative, which mimics the U.S. space program’s “Moon Shot” of the 1960s. Its ambitious goal is to lower the cost for green hydrogen production to one dollar per kilogram in a decade."

    Those working in such areas tend to be masterful at excluding the following warnings articles from their consciousness.

    IPCC report: ‘now or never’ if world is to stave off climate disaster (TheGuardian)

    UN chief: World has less than 2 years to avoid 'runaway climate change' (TheHill)
    * This statement was made 4.6 years ago.

Leave a comment




EXXON Mobil -0.35
Open57.81 Trading Vol.6.96M Previous Vol.241.7B
BUY 57.15
Sell 57.00
Oilprice - The No. 1 Source for Oil & Energy News