• 22 hours PDVSA Booted From Caribbean Terminal Over Unpaid Bills
  • 1 day Russia Warns Ukraine Against Recovering Oil Off The Coast Of Crimea
  • 1 day Syrian Rebels Relinquish Control Of Major Gas Field
  • 1 day Schlumberger Warns Of Moderating Investment In North America
  • 1 day Oil Prices Set For Weekly Loss As Profit Taking Trumps Mideast Tensions
  • 1 day Energy Regulators Look To Guard Grid From Cyberattacks
  • 1 day Mexico Says OPEC Has Not Approached It For Deal Extension
  • 1 day New Video Game Targets Oil Infrastructure
  • 1 day Shell Restarts Bonny Light Exports
  • 1 day Russia’s Rosneft To Take Majority In Kurdish Oil Pipeline
  • 2 days Iraq Struggles To Replace Damaged Kirkuk Equipment As Output Falls
  • 2 days British Utility Companies Brace For Major Reforms
  • 2 days Montenegro A ‘Sweet Spot’ Of Untapped Oil, Gas In The Adriatic
  • 2 days Rosneft CEO: Rising U.S. Shale A Downside Risk To Oil Prices
  • 2 days Brazil Could Invite More Bids For Unsold Pre-Salt Oil Blocks
  • 2 days OPEC/Non-OPEC Seek Consensus On Deal Before Nov Summit
  • 2 days London Stock Exchange Boss Defends Push To Win Aramco IPO
  • 2 days Rosneft Signs $400M Deal With Kurdistan
  • 2 days Kinder Morgan Warns About Trans Mountain Delays
  • 3 days India, China, U.S., Complain Of Venezuelan Crude Oil Quality Issues
  • 3 days Kurdish Kirkuk-Ceyhan Crude Oil Flows Plunge To 225,000 Bpd
  • 3 days Russia, Saudis Team Up To Boost Fracking Tech
  • 3 days Conflicting News Spurs Doubt On Aramco IPO
  • 3 days Exxon Starts Production At New Refinery In Texas
  • 3 days Iraq Asks BP To Redevelop Kirkuk Oil Fields
  • 4 days Oil Prices Rise After U.S. API Reports Strong Crude Inventory Draw
  • 4 days Oil Gains Spur Growth In Canada’s Oil Cities
  • 4 days China To Take 5% Of Rosneft’s Output In New Deal
  • 4 days UAE Oil Giant Seeks Partnership For Possible IPO
  • 4 days Planting Trees Could Cut Emissions As Much As Quitting Oil
  • 4 days VW Fails To Secure Critical Commodity For EVs
  • 4 days Enbridge Pipeline Expansion Finally Approved
  • 4 days Iraqi Forces Seize Control Of North Oil Co Fields In Kirkuk
  • 4 days OPEC Oil Deal Compliance Falls To 86%
  • 5 days U.S. Oil Production To Increase in November As Rig Count Falls
  • 5 days Gazprom Neft Unhappy With OPEC-Russia Production Cut Deal
  • 5 days Disputed Venezuelan Vote Could Lead To More Sanctions, Clashes
  • 5 days EU Urges U.S. Congress To Protect Iran Nuclear Deal
  • 5 days Oil Rig Explosion In Louisiana Leaves 7 Injured, 1 Still Missing
  • 5 days Aramco Says No Plans To Shelve IPO
Alt Text

Tesla Execs Bail As Cash Flow Hits Record Lows

Amid a rough second quarter…

Alt Text

Is Hydrogen Fuel As Dumb As Musk Thinks?

Hydrogen fuel cells have been…

John Daly

John Daly

Dr. John C.K. Daly is the chief analyst for Oilprice.com, Dr. Daly received his Ph.D. in 1986 from the School of Slavonic and East European…

More Info

Harvard Research Team has Breakthrough on Battery Storage

Harvard Research Team has Breakthrough on Battery Storage

As the world slowly transitions away from energy based on burning hydrocarbons, from coal and oil to natural gas, the main problem after start-up costs that have hobbled a further acceptance of renewable energy sources has been their erratic power output – the sun doesn’t always shine, the wind doesn’t always blow.

This shortcoming in turn has driven major research worldwide into battery technology to store electrical output when renewable power sources are functioning, to be released back into the grid when needed.

Now a research team of scientists at Harvard seem to have surmounted this bottleneck by developing a flow storage battery, based on organic materials rather than traditional metals.

The novel battery technology is reported in a paper published in Nature on January 10. Under the OPEN 2012 program, the Harvard team received funding from the U.S. Department of Energy's Advanced Research Projects Agency–Energy (ARPA-E) to develop the innovative grid-scale battery and plans to work with ARPA-E to catalyze further technological and market breakthroughs over the next several years.

Harvard researchers and engineers Brian Huskinson, Michael P. Marshak, Changwon Suh, Süleyman Er, Michael R. Gerhardt, Cooper J. Galvin, Xudong Chen, Alán Aspuru-Guzik, Roy G. Gordon, and Michael J. Aziz lay out their concepts in their "A metal-free organic–inorganic aqueous flow battery" article, published on 10 January in the journal Nature.

Related article: GE Unveils Breakthrough Energy Storage Tech

The scientists describe their breakthrough thusly: "Solid-electrode batteries maintain discharge at peak power for far too short a time to fully regulate wind or solar power output. In contrast, flow batteries can independently scale the power (electrode area) and energy (arbitrarily large storage volume) components of the system by maintaining all of the electro-active species in fluid form. Wide-scale utilization of flow batteries is, however, limited by the abundance and cost of these materials, particularly those using redox-active metals and precious-metal electrocatalysts. Here we describe a class of energy storage materials that exploits the favourable chemical and electrochemical properties of a family of molecules known as quinones. The example we demonstrate is a metal-free flow battery based on the redox chemistry of 9,10-anthraquinone-2,7-disulphonic acid (AQDS). AQDS undergoes extremely rapid and reversible two-electron two-proton reduction on a glassy carbon electrode in sulphuric acid."

In layman’s terms, the researchers have gone beyond traditional metal based free flow batteries, which have been around for more than three decades. Vanadium is used in the most commercially advanced flow battery technology now under development, but vanadium batteries typically cost about $80 per kilowatt hour.  Other flow batteries contain precious metal electrocatalysts such as the platinum used in fuel cells, which is even more expensive.

In contrast, the Harvard free flow battery relies on the electrochemistry of naturally abundant, inexpensive, small, organic carbon-based “quinone” molecules, which are similar to those that store energy in plants and animals.

Dr. Roy G. Gordon, the Thomas Dudley Cabot Professor of Chemistry and Professor of Materials Science, who led the work on the synthesis and chemical screening of molecules said, “The whole world of electricity storage has been using metal ions in various charge states but there is a limited number that you can put into solution and use to store energy, and none of them can economically store massive amounts of renewable energy. With organic molecules, we introduce a vast new set of possibilities. Some of them will be terrible and some will be really good. With these quinones we have the first ones that look really good.” Professor of Chemistry and Chemical Biology Alán Aspuru-Guzik used his pioneering high-throughput molecular screening methods to calculate the properties of more than 10,000 quinone molecules in search of the best candidates for the battery.

Related article: The Grid Gets a Very Big Lithium Ion Battery

What scale are we talking about? Team member Chemistry and Chemical Biology postdoctoral fellow Michael Marshak said that if you had a whole field of turbines or large solar farm, you could utilize the technology with a few very large storage tanks, adding, "Imagine a device the size of a home heating oil tank sitting in your basement. It would store a day's worth of sunshine from the solar panels on the roof of your house, potentially providing enough to power your household from late afternoon, through the night, into the next morning, without burning any fossil fuels."

The Harvard researchers believe that their new battery could prove economical in storing energy for up to two days on a large scale and claim that the quinone battery already performs as well as vanadium batteries. In contrast to metal-based flow batteries, Professor Michael Aziz believes that quinone-based systems could cut the energy storage costs down to just $27 per kWh. In the prototype battery that the team has developed, only the negative side of the battery uses quinones, with the positive side using bromine, but the team is now working on a new version that solely uses quinones.

One thing is certain – once the Harvard team’s research leads to patents, they will hardly be starved for funding from the investor community.

By. John C.K. Daly of Oilprice.com




Back to homepage


Leave a comment
  • presk eel pundit on January 14 2014 said:
    "Imagine a device the size of a home heating oil tank sitting in your basement. It would store a day's worth of sunshine from the solar panels on the roof of your house, potentially providing enough to power your household from late afternoon, through the night, into the next morning, without burning any fossil fuels."

    This may work in some areas, but here in Michigan we can go weeks without seeing sunshine.
  • Freddie Lee on January 14 2014 said:
    We still need a way to store energy for mobile use - Every month there is 'some news' on 'some breakthrough' on (electrical) energy storage. We've been waiting - but the breakthrough in energy storage (similar to the one we've seen in data storage) hasn't been made available to the public. I can buy a 4TB hard drive for a computer that I build - 10 years ago that hard drive would have been bleeding edge at 40 gig. That's 2 orders of magnitude increase. We need batteries that will drive vehicles not 100 miles (and cost $10,000) but 400-500 miles, and cost $2000.
  • SA Kiteman on January 22 2014 said:
    Cheap, high capacity energy storage (CHCES) would help nuclear a lot.

    "Imagine a device the size of a home heating oil tank sitting in your basement. It would store a day's worth of" nuclear energy from reactors running over night, EVERY night, "without burning any fossil fuels."

    CHCES could turn all energy into baseload energy.
  • Riaz Haider on February 17 2014 said:
    Matter cannot be created or destroyed.
    Matter can be converted to energy. Over all input into a system are always equal to the output from the system.
    Same applies for the energy in our Earth System.
    But in our Earth system, we keep receiving energy from Solar System (INPUT) Quantity BTU per day ????
    There must some energy flowing out of Earth System also (OUTPUT)into the space.. Quantity BTU per day ????
    This data will give us whether earth is getting cooler or hotter.
    There are some reaction which only go in both direction and are reversible.
    There are those that are irreversible.
    Once we start reaching the capability of changing the irreversible reaction to reversible one, whether in material phase, or in energy phase, that will be the turning point in this world.

Leave a comment




Oilprice - The No. 1 Source for Oil & Energy News