• 4 minutes Ten Years of Plunging Solar Prices
  • 7 minutes Hydrogen Capable Natural Gas Turbines
  • 10 minutes World looks on in horror as Trump flails over pandemic despite claims US leads way
  • 13 minutes Large gas belt discovered in China
  • 28 mins COVID 19 May Be Less Deadly Than Flu Study Finds
  • 19 mins 60 mph electric mopeds
  • 36 mins The CDC confirms remarkably low coronavirus death rate. Where is the media?
  • 44 mins Monetary and Fiscal Policies in Times of Large Debt:
  • 2 hours Let’s Try This....
  • 12 hours So the President is on that Hydroxy
  • 10 hours Russia loses its chance to capture the EU gas market
  • 9 hours DEFIANCE – There are More of Us Than Them
  • 1 hour New Aussie "big batteries"
  • 15 hours Payback Time: Republican Senators turn the tables on Democrats. The difference is the Republican investigations are legit.
  • 4 hours Iran's first oil tanker has arrived near Venezuela
  • 17 hours Beware the Left's 'Degrowth' Movement (i.e. why Covid-19 is Good)
  • 15 hours China to Impose Dictatorship on Hong Kong
  • 8 hours Fed Says It Will Begin Buying Corporate-Debt ETFs on Tuesday
The Secret To Unlocking The Holy Grail Of Energy

The Secret To Unlocking The Holy Grail Of Energy

Nuclear fusion is undoubtedly the…

The World Can’t Let Nuclear Energy Die

The World Can’t Let Nuclear Energy Die

Despite wavering public sentiment and…

Hydrogen: The Secret To Commercializing Nuclear Fusion

Hydrogen: The Secret To Commercializing Nuclear Fusion

There’s a new breakthrough that…

James Burgess

James Burgess

James Burgess studied Business Management at the University of Nottingham. He has worked in property development, chartered surveying, marketing, law, and accounts. He has also…

More Info

Premium Content

A Giant Step Forward in Nuclear Fusion

Fusion reactors heat a plasma of the hydrogen isotopes deuterium and tritium under immense pressure until their nuclei overcome the natural force of repulsion and fuse together. Upon fusing they form helium nuclei, releasing excess neutrons and huge amounts of energy.

Fusion reactions are the power source of the stars, and would be the most powerful source of clean energy on the planet. Currently there are two multibillion dollar facilities attempting to achieve stable fusion reactions; the ITER fusion reactor in France, and the National Ignition Facility (NIF) in California.

ITER will be ready to test its fusion reactor in about 2019 or 2020, and will trigger the reaction by containing the plasma fuel in powerful magnetic fields, and then heating it with particle beams and radio waves.

NIF has already started testing its design, whereby it uses a very powerful laser pulse to crush a tiny capsule filled with plasma. Unfortunately it has not yet achieved any significant levels of energy production.

It actually turns out that the group closest to achieving nuclear fusion has done so on a far smaller budget than ITER or NIF.

Researchers at the Sandia National Laboratory in Albuquerque, New Mexico, are on track to test their reactor before the end of 2013, and have high hopes that it will reach break-even. Break-even is the point at which the process produces as much energy as was consumed to trigger the reaction, and is a huge step along the path to achieving full nuclear fusion reactions that can power the planet in the future.

RELATED: Big Oil Funding U.S. Politics

Sandia use a method similar to NIF, however they use their MagLIF technology to instantly crush the fuel, a process known as inertial confinement fusion, with a magnetic pulse, not a laser pulse.

The process involves placing a tiny cylinder, about 7mm in diameter, filled with the deuterium and tritium plasma, inside their Z machine. The Z machine is an electrical pulse generator, capable of delivering 26 million amps in a short pulse lasting just milliseconds. As the vast current passes along the walls of the cylinder it creates a magnetic field that exerts a huge force on the walls, instantly crushing the cylinder and compressing the fuel inside.

After initial tests the scientists discovered that the Z machine was not powerful enough to produce sufficient heat to trigger a break even reaction. Researcher Steve Slutz led a team to investigate how they might enhance the process, and with the help of various computer simulations they discovered three changes that they could make to increase the heat of the reaction.

RELATED: Exxon & Rosneft Plan to Drill for Oil in Old Soviet Nuclear Dumping Ground

  1. They would apply the pulse of current in an even shorter period of time, just 100 nanoseconds, in order to increase the speed of the implosion.
  2. They would preheat the fuel inside the cylinder with a laser pulse just before their Z machine delivered its pulse, so that the starting temperature of the reaction is much higher.
  3. They would place the cylinder in a magnetic containment field to prevent any heat from escaping in the form of charged particles.


Sandia’s plasma physicist, Ryan McBride, is heading the team that are making the upgrades and checking to see if the computer simulations were accurate.

The first change, delivering the pulse in a shorter time, has been made, and McBride was proud to announce that “it performed as predicted.” The other two changes will be made in the coming year, and they hope to put all three modifications together by the end of 2013 for another attempt at break-even.

By. James Burgess of Oilprice.com


Download The Free Oilprice App Today

Back to homepage





Leave a comment

Leave a comment




Oilprice - The No. 1 Source for Oil & Energy News