• 11 hours PDVSA Booted From Caribbean Terminal Over Unpaid Bills
  • 13 hours Russia Warns Ukraine Against Recovering Oil Off The Coast Of Crimea
  • 15 hours Syrian Rebels Relinquish Control Of Major Gas Field
  • 16 hours Schlumberger Warns Of Moderating Investment In North America
  • 17 hours Oil Prices Set For Weekly Loss As Profit Taking Trumps Mideast Tensions
  • 18 hours Energy Regulators Look To Guard Grid From Cyberattacks
  • 20 hours Mexico Says OPEC Has Not Approached It For Deal Extension
  • 21 hours New Video Game Targets Oil Infrastructure
  • 23 hours Shell Restarts Bonny Light Exports
  • 24 hours Russia’s Rosneft To Take Majority In Kurdish Oil Pipeline
  • 1 day Iraq Struggles To Replace Damaged Kirkuk Equipment As Output Falls
  • 1 day British Utility Companies Brace For Major Reforms
  • 2 days Montenegro A ‘Sweet Spot’ Of Untapped Oil, Gas In The Adriatic
  • 2 days Rosneft CEO: Rising U.S. Shale A Downside Risk To Oil Prices
  • 2 days Brazil Could Invite More Bids For Unsold Pre-Salt Oil Blocks
  • 2 days OPEC/Non-OPEC Seek Consensus On Deal Before Nov Summit
  • 2 days London Stock Exchange Boss Defends Push To Win Aramco IPO
  • 2 days Rosneft Signs $400M Deal With Kurdistan
  • 2 days Kinder Morgan Warns About Trans Mountain Delays
  • 2 days India, China, U.S., Complain Of Venezuelan Crude Oil Quality Issues
  • 2 days Kurdish Kirkuk-Ceyhan Crude Oil Flows Plunge To 225,000 Bpd
  • 3 days Russia, Saudis Team Up To Boost Fracking Tech
  • 3 days Conflicting News Spurs Doubt On Aramco IPO
  • 3 days Exxon Starts Production At New Refinery In Texas
  • 3 days Iraq Asks BP To Redevelop Kirkuk Oil Fields
  • 4 days Oil Prices Rise After U.S. API Reports Strong Crude Inventory Draw
  • 4 days Oil Gains Spur Growth In Canada’s Oil Cities
  • 4 days China To Take 5% Of Rosneft’s Output In New Deal
  • 4 days UAE Oil Giant Seeks Partnership For Possible IPO
  • 4 days Planting Trees Could Cut Emissions As Much As Quitting Oil
  • 4 days VW Fails To Secure Critical Commodity For EVs
  • 4 days Enbridge Pipeline Expansion Finally Approved
  • 4 days Iraqi Forces Seize Control Of North Oil Co Fields In Kirkuk
  • 4 days OPEC Oil Deal Compliance Falls To 86%
  • 5 days U.S. Oil Production To Increase in November As Rig Count Falls
  • 5 days Gazprom Neft Unhappy With OPEC-Russia Production Cut Deal
  • 5 days Disputed Venezuelan Vote Could Lead To More Sanctions, Clashes
  • 5 days EU Urges U.S. Congress To Protect Iran Nuclear Deal
  • 5 days Oil Rig Explosion In Louisiana Leaves 7 Injured, 1 Still Missing
  • 5 days Aramco Says No Plans To Shelve IPO

Replacing Platinum to Build Cheaper Fuel Cells

Replacing Platinum to Build Cheaper Fuel Cells

A new type of polymer membrane could replace expensive platinum in alkaline batteries and fuel cells.

“We have tried to break this paradigm of tradeoffs in materials (by improving) both the stability and the conductivity of this membrane at the same time, and that is what we were able to do with this unique polymeric materials design,” says Michael Hickner, associate professor of materials science and engineering at Penn State.

In solid-state alkaline fuel cells, anion exchange membranes conduct negative charges between the device’s cathode and anode—the negative and positive connections of the cell—to create useable electric power.

fuel cells
polymer membrane
Above: Research associates Yongjun Leng, left, and Nanwen Li place a membrane electrode assembly into the fuel cell stand for data analysis in their Reber Building laboratory. (Credit: Patrick Mansell/Penn State)

Related article: A Follow up on the Hydrogen Fuel Cell Breakthrough

Most fuel cells currently use membranes that require platinum-based catalysts that are effective but expensive.

Hickner’s new polymer is a unique anion exchange membrane—a new type of fuel cell and battery membrane—that allows the use of much more cost-efficient non-precious metal catalysts and does not compromise either durability or efficiency like previous anion exchange membranes.

“What we’re really doing here is providing alternatives, possible choices, new technology so that people who want to commercialize fuel cells can now choose between the old paradigm and new possibilities with anion exchange membranes,” Hickner says.

Creating this alternative took some intuition and good fortune. In work spearheaded by Nanwen Li, a postdoctoral researcher in materials science and engineering, Hickner’s team created several variations of the membrane, each with slightly different chemical compositions.

They then ran each variation under simulated conditions to predict which would be optimal in an actual fuel cell. The researchers report their findings in a recent issue of the Journal of the American Chemical Society.

Durable and efficient

Related article: The Grid Gets a Very Big Lithium Ion Battery

Based on these initial tests, the group predicted that the membranes with long 16-carbon structures in their chemical makeup would provide the best efficiency and durability, as measured respectively by conductivity and long-term stability.

The team then tested each possibility in an operating fuel cell device and measured the fuel cell’s output and lifetime for each material variation.

Despite predictions, the membranes containing shorter 6-carbon structures proved to be much more durable and efficient after 60 hours of continuous operation.

“We were somewhat surprised . . . that what we thought was the best material in our lab testing wasn’t necessarily the best material in the cell when it was evaluated over time,” says Hickner, who adds that researchers are still trying to understand why the 6-carbon variation has better long-term durability than the 16-carbon sample in the fuel cell by studying the operating conditions of the cell in detail.

Because the successful membrane was so much more effective than the initial lab studies predicted, researchers are now interested in accounting for the interactions that the membranes experienced while inside the cell.

“We have the fuel cell output—so we have the fuel cell efficiency, the fuel cell life time—but we don’t have the molecular scale information in the fuel cell,” Hickner says. “That’s the next step, trying to figure out how these polymers are working in the fuel cell on a detailed level.”

The Advanced Research Projects Agency-Energy at the US Department of Energy funded this project in collaboration with Proton OnSite, a leading membrane electrolyzer company based in Connecticut.

By. A'ndrea Elyse Messer




Back to homepage


Leave a comment

Leave a comment




Oilprice - The No. 1 Source for Oil & Energy News