• 3 minutes CoV-19: China, WHO, myth vs fact
  • 6 minutes Trump reinvented tariffs and it worked
  • 9 minutes IEA Sees First Global Oil Demand Drop in a Decade on Coronavirus
  • 12 minutes Question: Why are oil futures so low through 2020?
  • 21 hours "For the Public's Interest"
  • 4 hours Don't sneeze. Coronavirus is a threat to oil markets and global economies
  • 1 hour Natural Gas from Cow Poop Used to Save the Environment and Help Farmers
  • 9 hours Coronovairus, Phase One Agreement, Lower for Longer
  • 11 hours Weekly U.S. Imports of Crude Oil. No, the U.S. is NOT oil & gas self-sufficient.
  • 3 hours Is Pete Buttigieg emerging as the most likely challenger to Trump?
  • 1 day China's Dreams of World Leadership are Fading
  • 14 mins Is cheaper plastics feedstock on the horizon?
  • 1 day Cheap natural gas is making it very hard to go green
  • 1 day Peak Shale Will Send Oil Prices Sky High
  • 1 day Has Trump put the USA at the service of Israel?
  • 1 day Europe’s Green Deal: Same Hysteria, Same Destruction
Alt Text

Hydrogen Fuel Tech Just Got A Major Boost

Researchers from Lancaster University have…

Alt Text

Tesla’s Largest Competitor Is Hidden In Plain Sight

Tesla’s biggest competitor isn’t producing…

Brian Westenhaus

Brian Westenhaus

Brian is the editor of the popular energy technology site New Energy and Fuel. The site’s mission is to inform, stimulate, amuse and abuse the…

More Info

Premium Content

One Step Closer to Practical and Affordable Fuel Cells

A group of researchers led by Shriram Ramanathan at the Harvard School of Engineering and Applied Sciences are increasingly optimistic about the commercial viability of making fuel cells practical and affordable.  From advances in nanostructured devices, lower operating temperatures, and the use of an abundant fuel source and cheaper materials commercial viability of the technology will not happen overnight, however the group believes it may not take much longer.

Ramanathan, an expert and innovator in the development of solid-oxide fuel cells (SOFCs), says they may, in fact, soon become the go-to technology for those on the go.  Ramanathan’s confidence comes from two studies appearing in the Journal of Power Sources this month, Ramanathan’s team reported several critical advances in SOFC technology that may quicken their pace to market.

In the first paper, Ramanathan’s group demonstrated stable and functional all-ceramic thin-film SOFCs that do not contain any platinum.  There’s the “Eureka!” moment.

Ramanathan explains that in thin-film SOFCs, the electrolyte is reduced to a hundredth or even a thousandth of its usual scale, using densely packed layers of special ceramic films, each just nanometers in thickness. These micro-SOFCs usually incorporate platinum electrodes, but they can be expensive and unreliable.  “If you use porous metal electrodes they tend to be inherently unstable over long periods of time. They start to agglomerate and create open circuits in the fuel cells,’ said Ramanathan.  Ramanathan’s platinum-free micro-SOFC eliminates this problem, resulting in a win-win: lower cost and higher reliability.

In a second paper published this month, the team demonstrated a methane-fueled micro-SOFC operating at less than 500° Celsius, a feat that is relatively rare in the field.  Lightning Strike!

Here the explanation is traditional SOFCs have been operating at about 800-1000°C, but such high temperatures are only practical for stationary power generation. In short, using them to power up for example, a smartphone mid-commute is not feasible.  In recent years, materials scientists have been working to reduce the required operating temperature to about 300-500°C, a range Ramanathan calls the “sweet spot.”

Moreover, when fuel cells operate at lower temperatures, material reliability is less critical – allowing, for example, the use of less expensive ceramics and metallic interconnects – and the start-up (heat up) time can be shorter. “Low temperature is a holy grail in this field,” says Ramanathan. “If you can realize high-performance solid-oxide fuel cells that operate in the 300-500°C range, you can use them in transportation vehicles and portable electronics, and with different types of fuels.”

Of major importance is the use of methane, from abundant and cheap natural gas, in the team’s SOFC is also of note. Until recently, hydrogen has been the primary fuel for SOFCs. Pure hydrogen, however, requires a greater amount of processing.  “It’s expensive to make pure hydrogen,” says Ramanathan, “and that severely limits the range of applications.”

As methane begins to take over as the fuel of choice, the advances in temperature, reliability, and affordability should continue to reinforce each other.

Electrochemical fuel cells have long been viewed as a potential eco-friendly alternative to fossil fuels – especially as most SOFCs leave behind little more than water as waste – while the obstacles to using SOFCs to charge laptops and phones or drive the next generation of cars and trucks have remained reliability, temperature, and cost.

Fuel cells operate by converting chemical energy (from hydrogen or a hydrocarbon fuel such as methane) into an electric current. Oxygen ions travel from the cathode through the electrolyte toward the anode, where they oxidize the fuel to produce a current of electrons back toward the cathode.  That may seem simple enough in principle, but until now, SOFCs have been more suited for the laboratory rather than the office or garage.

For the U.S., academic research using methane is a huge relief, because getting away from the capital investment, processing and chemistry to obtain hydrogen and then store it and handle it by ordinary people – is an economic killer.  Using a compressible gas like methane is a major improvement in realistic thinking about the real world.

But remember, the Japanese already have a small liquid fueled fuel cell on the market now using methanol. For all the excitement in Boston, the race is very much still on.  The Harvard group does have an advantage – methane is cheap and easy to make, plus it’s piped to urban homes nation wide.

Lets hope the Harvard team makes more progress.  With fuel cell efficiency and a low cost fuel source that’s widely disbursed high efficiency small-scale power generation could get going along with fuel cell vehicle charging.  It’s great news, indeed.

By. Brian Westenhaus

Source: A Eureka! Fuel Cell Lightening Strike!




Download The Free Oilprice App Today

Back to homepage




Leave a comment

Leave a comment




Oilprice - The No. 1 Source for Oil & Energy News