• 2 days U.S. On Track To Unseat Saudi Arabia As No.2 Oil Producer In the World
  • 3 days Senior Interior Dept. Official Says Florida Still On Trump’s Draft Drilling Plan
  • 3 days Schlumberger Optimistic In 2018 For Oilfield Services Businesses
  • 3 days Only 1/3 Of Oil Patch Jobs To Return To Canada After Downturn Ends
  • 3 days Statoil, YPF Finalize Joint Vaca Muerta Development Deal
  • 3 days TransCanada Boasts Long-Term Commitments For Keystone XL
  • 3 days Nigeria Files Suit Against JP Morgan Over Oil Field Sale
  • 3 days Chinese Oil Ships Found Violating UN Sanctions On North Korea
  • 3 days Oil Slick From Iranian Tanker Explosion Is Now The Size Of Paris
  • 4 days Nigeria Approves Petroleum Industry Bill After 17 Long Years
  • 4 days Venezuelan Output Drops To 28-Year Low In 2017
  • 4 days OPEC Revises Up Non-OPEC Production Estimates For 2018
  • 4 days Iraq Ready To Sign Deal With BP For Kirkuk Fields
  • 4 days Kinder Morgan Delays Trans Mountain Launch Again
  • 4 days Shell Inks Another Solar Deal
  • 5 days API Reports Seventh Large Crude Draw In Seven Weeks
  • 5 days Maduro’s Advisors Recommend Selling Petro At Steep 60% Discount
  • 5 days EIA: Shale Oil Output To Rise By 1.8 Million Bpd Through Q1 2019
  • 5 days IEA: Don’t Expect Much Oil From Arctic National Wildlife Refuge Before 2030
  • 5 days Minister Says Norway Must Prepare For Arctic Oil Race With Russia
  • 5 days Eight Years Late—UK Hinkley Point C To Be In Service By 2025
  • 5 days Sunk Iranian Oil Tanker Leave Behind Two Slicks
  • 5 days Saudi Arabia Shuns UBS, BofA As Aramco IPO Coordinators
  • 5 days WCS-WTI Spread Narrows As Exports-By-Rail Pick Up
  • 5 days Norway Grants Record 75 New Offshore Exploration Leases
  • 6 days China’s Growing Appetite For Renewables
  • 6 days Chevron To Resume Drilling In Kurdistan
  • 6 days India Boosts Oil, Gas Resource Estimate Ahead Of Bidding Round
  • 6 days India’s Reliance Boosts Export Refinery Capacity By 30%
  • 6 days Nigeria Among Worst Performers In Electricity Supply
  • 6 days ELN Attacks Another Colombian Pipeline As Ceasefire Ceases
  • 6 days Shell Buys 43.8% Stake In Silicon Ranch Solar
  • 7 days Saudis To Award Nuclear Power Contracts In December
  • 7 days Shell Approves Its First North Sea Oil Project In Six Years
  • 7 days China Unlikely To Maintain Record Oil Product Exports
  • 7 days Australia Solar Power Additions Hit Record In 2017
  • 7 days Morocco Prepares $4.6B Gas Project Tender
  • 7 days Iranian Oil Tanker Sinks After Second Explosion
  • 9 days Russia To Discuss Possible Exit From OPEC Deal
  • 10 days Iranian Oil Tanker Drifts Into Japanese Waters As Fires Rage On
Alt Text

Algae May Be Green Energy’s Secret Weapon

A new breakthrough from Cambridge…

Alt Text

A Home-Battery System that Could Rival Tesla

A small start-up company is…

Brian Westenhaus

Brian Westenhaus

Brian is the editor of the popular energy technology site New Energy and Fuel. The site’s mission is to inform, stimulate, amuse and abuse the…

More Info

Fuel Cell Breakthrough Lowers Costs And Ups Capacity

fuel cell storage

University of Delaware (UD) scientists have created a new technology that could make fuel cells cheaper and more durable. Hydrogen-powered fuel cells are a green alternative to internal combustion engines because they produce power through electrochemical reactions, leaving no pollution behind and are far more efficient. Platinum is the most common catalyst in the type of fuel cells used in vehicles, but it’s expensive. The UD team used a novel method to come up with a less expensive catalyst that could speed up the commercialization of fuel cell vehicles.

They describe their results in a paper published in Nature Communications.

Hydrogen-powered fuel cells are a green alternative to internal combustion engines because they produce power through electrochemical reactions, leaving no pollution behind.

Materials called catalysts spur these electrochemical reactions. Platinum is the most common catalyst in the type of fuel cells used in vehicles. However, platinum is expensive – as anyone who’s shopped for jewelry knows. The metal costs around $30,000 per kilogram.

(Click to enlarge)

Schematic of a two-step method for the synthesis of transition metal carbide nanoparticles dispersed on a carbon material. Image Credit: University of Delaware. Click image for the largest view.

Instead, the UD team made a catalyst of tungsten carbide, which goes for around $150 per kilogram. They produced tungsten carbide nanoparticles in a novel way, much smaller and more scalable than previous methods.

Dionisios Vlachos, director of UD’s Catalysis Center for Energy Innovation said, “The material is typically made at very high temperatures, about 1,500º Celsius, and at these temperatures, it grows big and has little surface area for chemistry to take place on. Our approach is one of the first to make nanoscale material of high surface area that can be commercially relevant for catalysis.”

The researchers made tungsten carbide nanoparticles using a series of steps including hydrothermal treatment, separation, reduction, carburization and more. Related: The North Sea Oil Recovery Is Dead In The Water

Weiqing Zheng, a research associate at the Catalysis Center for Energy Innovation said, “We can isolate the individual tungsten carbide nanoparticles during the process and make a very uniform distribution of particle size.”

Next, the researchers incorporated the tungsten carbide nanoparticles into the membrane of a fuel cell. Automotive fuel cells, known as proton exchange membrane fuel cells (PEMFCs), contain a polymeric membrane. This membrane separates the cathode from the anode, which splits hydrogen (H2) into ions (protons) and delivers them to the cathode, which puts out current.

The plastic-like membrane wears down over time, especially if it undergoes too many wet/dry cycles, which can happen easily as water and heat are produced during the electrochemical reactions in fuel cells.

When tungsten carbide is incorporated into the fuel cell membrane, it humidifies the membrane at a level that optimizes performance.

Liang Wang, an associate scientist in the Department of Mechanical Engineering said, “The tungsten carbide catalyst improves the water management of fuel cells and reduces the burden of the humidification system.”

The team also found that tungsten carbide captures damaging free radicals before they can degrade the fuel cell membrane. As a result, membranes with tungsten carbide nanoparticles last longer than traditional ones.

Professor Ajay K. Prasad explained, “The low-cost catalyst we have developed can be incorporated within the membrane to improve performance and power density. As a result, the physical size of the fuel cell stack can be reduced for the same power, making it lighter and cheaper. Furthermore, our catalyst is able to deliver higher performance without sacrificing durability, which is a big improvement over similar efforts by other groups.” Related: China Declares Support For Punitive Action Against North Korea

The UD research team used innovative methods to test the durability of a fuel cell made with tungsten carbide. They used a scanning electron microscope and focused ion beam to obtain thin-slice images of the membrane, which they analyzed with software, rebuilding the three-dimensional structure of the membranes to determine fuel cell longevity.

The group has applied for a patent and hopes to commercialize their technology.

“This is a very good example of how different groups across departments can collaborate,” Zheng said.

The past few years have seen several breakthroughs that haven’t worked up to commercial scale. Some are still possible but the market is still small and demand is low. Perhaps this technology is the break out one. There remains the hydrogen storage matter. But hydrogen production used quickly will make a different circumstance that can be exploited. Maybe this market is closer to being ready. Perhaps this will be a trigger?

By Brian Westenhaus

More Top Reads From Oilprice.com:




Back to homepage


Leave a comment
  • Bill Simpson on September 10 2017 said:
    The trouble with hydrogen fuel cells is that, unlike oil and natural gas, you have to make the hydrogen. That extra step costs more. And hydrogen is difficult to store and transport. It can be done, but it is expensive.
    I doubt cars powered by hydrogen will ever take over from cars powered by lithium batteries. Batteries will be able to handle the vast majority of daily vehicle trips, without recharging during the day. And the battery cars will be much simpler than those containing complex fuel cells and hydrogen storage tanks. I wouldn't put a car with a high pressure hydrogen tank inside my garage which is attached to my house. Leaking gasoline you can smell, and see. The flammable vapors sit on the floor. Hydrogen would mix with the air until some spark ignited it. A powerful explosion could occur without any warning. No thanks, I'll go with the batteries.
  • Steve on September 10 2017 said:
    "...a green alternative...leaving no pollution behind..."

    Maybe it's just me, but all the materials and processes described in the 'revolutionary' method seem like they'd be anything but 'green' and pollution free.

Leave a comment




Oilprice - The No. 1 Source for Oil & Energy News