• 1 hour Iraq Struggles To Replace Damaged Kirkuk Equipment As Output Falls
  • 6 hours British Utility Companies Brace For Major Reforms
  • 10 hours Montenegro A ‘Sweet Spot’ Of Untapped Oil, Gas In The Adriatic
  • 12 hours Rosneft CEO: Rising U.S. Shale A Downside Risk To Oil Prices
  • 13 hours Brazil Could Invite More Bids For Unsold Pre-Salt Oil Blocks
  • 14 hours OPEC/Non-OPEC Seek Consensus On Deal Before Nov Summit
  • 15 hours London Stock Exchange Boss Defends Push To Win Aramco IPO
  • 16 hours Rosneft Signs $400M Deal With Kurdistan
  • 19 hours Kinder Morgan Warns About Trans Mountain Delays
  • 1 day India, China, U.S., Complain Of Venezuelan Crude Oil Quality Issues
  • 1 day Kurdish Kirkuk-Ceyhan Crude Oil Flows Plunge To 225,000 Bpd
  • 1 day Russia, Saudis Team Up To Boost Fracking Tech
  • 2 days Conflicting News Spurs Doubt On Aramco IPO
  • 2 days Exxon Starts Production At New Refinery In Texas
  • 2 days Iraq Asks BP To Redevelop Kirkuk Oil Fields
  • 3 days Oil Prices Rise After U.S. API Reports Strong Crude Inventory Draw
  • 3 days Oil Gains Spur Growth In Canada’s Oil Cities
  • 3 days China To Take 5% Of Rosneft’s Output In New Deal
  • 3 days UAE Oil Giant Seeks Partnership For Possible IPO
  • 3 days Planting Trees Could Cut Emissions As Much As Quitting Oil
  • 3 days VW Fails To Secure Critical Commodity For EVs
  • 3 days Enbridge Pipeline Expansion Finally Approved
  • 3 days Iraqi Forces Seize Control Of North Oil Co Fields In Kirkuk
  • 3 days OPEC Oil Deal Compliance Falls To 86%
  • 3 days U.S. Oil Production To Increase in November As Rig Count Falls
  • 4 days Gazprom Neft Unhappy With OPEC-Russia Production Cut Deal
  • 4 days Disputed Venezuelan Vote Could Lead To More Sanctions, Clashes
  • 4 days EU Urges U.S. Congress To Protect Iran Nuclear Deal
  • 4 days Oil Rig Explosion In Louisiana Leaves 7 Injured, 1 Still Missing
  • 4 days Aramco Says No Plans To Shelve IPO
  • 6 days Trump Passes Iran Nuclear Deal Back to Congress
  • 6 days Texas Shutters More Coal-Fired Plants
  • 7 days Oil Trading Firm Expects Unprecedented U.S. Crude Exports
  • 7 days UK’s FCA Met With Aramco Prior To Proposing Listing Rule Change
  • 7 days Chevron Quits Australian Deepwater Oil Exploration
  • 7 days Europe Braces For End Of Iran Nuclear Deal
  • 7 days Renewable Energy Startup Powering Native American Protest Camp
  • 7 days Husky Energy Set To Restart Pipeline
  • 7 days Russia, Morocco Sign String Of Energy And Military Deals
  • 8 days Norway Looks To Cut Some Of Its Generous Tax Breaks For EVs
Alt Text

Is Cactus Gas The Future Of Biofuel?

A Mexican green energy startup,…

Alt Text

“Grassoline” The Jet Fuel Of The Future?

Researchers have developed a process…

Alt Text

New Tech Could Turn Seaweed Into Biofuel

Scientists discovered an unlikely abundant…

The Massive Potential of U.S. Biofuels

The Massive Potential of U.S. Biofuels

More than 80% of total agricultural production in the United States is used to feed animals, not human beings directly;

Our analysis shows that the US can produce very large amounts of biofuels, maintain domestic food supplies, continue our contribution to international food supplies, increase soil fertility, and significantly reduce GHGs. If so, then integrating biofuel production with animal feed production may also be a pathway available to many other countries. Resolving the apparent “food versus fuel” conflict seems to be more a matter of making the right choices rather than hard resource and technical constraints. If we so choose, we can quite readily adapt our agricultural system to produce food, animal feed, and sustainable biofuels.—Dale et al _gcc

 

Up until now, most people analysing US biofuels potential have failed to look at a realistic and integrated system of fuels and food. In real life -- unlike a typical computer model with excessively simplified and misleading assumptions -- new economies grow up to utilise by-products of new and existing processes and industries. When these new markets and economies are neglected by forecasters and modelers, their results become completely erroneous.

 

In their study, they analyzed only the 114 million ha of cropland used now to produce animal feed, corn ethanol, and exports. Cropland used for direct human consumption, forests, grassland pasture, and rangeland are not considered. Thus, they note, the analysis provides an example of what is technically feasible, not an upper limit on US biofuel production.

For the study, they considered two land-efficient animal feed technologies: ammonia fiber expansion (AFEX) pretreatment to produce highly digestible (by ruminants) cellulosic biomass and leaf protein concentrate (LPC) production.

During AFEX, concentrated ammonia is contacted with cellulosic biomass at moderate temperatures, resulting in greatly increased production of fermentable sugars by enzymatic hydrolysis. AFEX increases the digestibility of cellulosic biomass for ruminant animals while increasing protein production in the animal rumen due to the addition of ammonia-based byproducts.

Although extensive feed testing and commercial applications have not yet been introduced, AFEX-treated rice straw has been successfully included in dairy cattle diets, and tests with switchgrass and corn stover have shown increased cell wall digestibility when exposed to rumen microorganisms.

High-protein LPC products are generally produced by first pulping and then mechanically pressing fresh green plant matter. The resulting protein-rich juice is then coagulated and dried. The remaining fibrous material is depleted in protein, but is still suitable for animal feed or biofuel production.

Animal feeding operations can be adapted to these new feeds, thereby freeing land for biofuel production, according to the authors. They also considered aggressive double-cropping, thereby increasing the total biomass produced per ha. _GCC

Even the CO2 that is produced in fermentation reactions can be filtered and used in high-value operations -- such as oil well recovery, algae growth, food production, and a wide range of chemical processes.

Instead of seeing the CO2 as a net positive, third-rate scientists and analysts tend to foolishly and short-sightedly look at CO2 as a "dangerous pollutant" and a complete liability. This faulty perspective is most likely to be seen where politics unduely influences scientific funding and publishing.

By. Al Fin




Back to homepage


Leave a comment

Leave a comment




Oilprice - The No. 1 Source for Oil & Energy News