• 14 hours Shell Oil Trading Head Steps Down After 29 Years
  • 18 hours Higher Oil Prices Reduce North American Oil Bankruptcies
  • 20 hours Statoil To Boost Exploration Drilling Offshore Norway In 2018
  • 21 hours $1.6 Billion Canadian-US Hydropower Project Approved
  • 23 hours Venezuela Officially In Default
  • 1 day Iran Prepares To Export LNG To Boost Trade Relations
  • 1 day Keystone Pipeline Leaks 5,000 Barrels Into Farmland
  • 1 day Saudi Oil Minister: Markets Will Not Rebalance By March
  • 2 days Obscure Dutch Firm Wins Venezuelan Oil Block As Debt Tensions Mount
  • 2 days Rosneft Announces Completion Of World’s Longest Well
  • 2 days Ecuador Won’t Ask Exemption From OPEC Oil Production Cuts
  • 2 days Norway’s $1 Trillion Wealth Fund Proposes To Ditch Oil Stocks
  • 2 days Ecuador Seeks To Clear Schlumberger Debt By End-November
  • 2 days Santos Admits It Rejected $7.2B Takeover Bid
  • 2 days U.S. Senate Panel Votes To Open Alaskan Refuge To Drilling
  • 3 days Africa’s Richest Woman Fired From Sonangol
  • 3 days Oil And Gas M&A Deal Appetite Highest Since 2013
  • 3 days Russian Hackers Target British Energy Industry
  • 3 days Venezuela Signs $3.15B Debt Restructuring Deal With Russia
  • 3 days DOJ: Protestors Interfering With Pipeline Construction Will Be Prosecuted
  • 3 days Lower Oil Prices Benefit European Refiners
  • 3 days World’s Biggest Private Equity Firm Raises $1 Billion To Invest In Oil
  • 4 days Oil Prices Tank After API Reports Strong Build In Crude Inventories
  • 4 days Iraq Oil Revenue Not Enough For Sustainable Development
  • 4 days Sudan In Talks With Foreign Oil Firms To Boost Crude Production
  • 4 days Shell: Four Oil Platforms Shut In Gulf Of Mexico After Fire
  • 4 days OPEC To Recruit New Members To Fight Market Imbalance
  • 4 days Green Groups Want Norway’s Arctic Oil Drilling Licenses Canceled
  • 4 days Venezuelan Oil Output Drops To Lowest In 28 Years
  • 5 days Shale Production Rises By 80,000 BPD In Latest EIA Forecasts
  • 5 days GE Considers Selling Baker Hughes Assets
  • 5 days Eni To Address Barents Sea Regulatory Breaches By Dec 11
  • 5 days Saudi Aramco To Invest $300 Billion In Upstream Projects
  • 5 days Aramco To List Shares In Hong Kong ‘For Sure’
  • 5 days BP CEO Sees Venezuela As Oil’s Wildcard
  • 5 days Iran Denies Involvement In Bahrain Oil Pipeline Blast
  • 8 days The Oil Rig Drilling 10 Miles Under The Sea
  • 8 days Baghdad Agrees To Ship Kirkuk Oil To Iran
  • 8 days Another Group Joins Niger Delta Avengers’ Ceasefire Boycott
  • 8 days Italy Looks To Phase Out Coal-Fired Electricity By 2025
Alt Text

Did This Startup Solve The Carbon Capture Challenge?

Costs have long prohibited carbon…

Alt Text

Oil Majors See Profit In Carbon Capture And Storage

carbon capture and storage technology…

Computer Model Identifies the Best Candidates for Greenhouse Gas Removal

Computer Model Identifies the Best Candidates for Greenhouse Gas Removal

A new computer model can identify the best molecular candidates for removing carbon dioxide, molecular nitrogen, and other greenhouse gases from power plant flues.

The model is the first computational method to provide accurate simulations of the interactions between flue gases and a special variety of the gas-capturing molecular systems known as metal-organic frameworks (MOFs).

It should greatly accelerate the search for new low-cost and efficient ways to burn coal without exacerbating global climate change.

Berend Smit, an international authority on molecular simulations who holds joint appointments with Berkeley Lab’s Materials Sciences Division and University of California, Berkeley, where he directs Berkeley’s Energy Frontier Research Center, co-led the development of this computational model with Laura Gagliardi, a chemistry professor at the University of Minnesota.

“We’ve developed a novel computational methodology that yields accurate force fields–parameters describing the potential energy of a molecular system–to correctly predict the adsorption of carbon dioxide and molecular nitrogen by MOFs with open metal sites,” Smit says.

“All previous attempts at developing such a methodology failed and most people gave up trying, but our model is applicable to a broad range of systems and can be used to predict properties of open-site MOFs that have not yet been synthesized.”

Smit and Gagliardi are the corresponding authors of a paper describing this research in the journal Nature Chemistry.

Given that the United States holds the world’s largest estimated recoverable reserves of coal, coal-burning power plants will continue to be a major source of our nation’s electricity generation for the foreseeable future.

However, given rising concerns over the contributions of burning coal to global climate change, there is an urgent need for an effective and economical means of removing greenhouse gases from flues before those gases enter the atmosphere.

Current technologies proposed for capturing greenhouse gas emissions, based on amines or other molecular systems, would use about one-third of the energy generated by the power plants. This “parasitic energy” would substantially drive up the price of electricity.

One in a million

MOFs are crystalline molecular systems that can serve as storage vessels with a sponge-like capacity for capturing and containing carbon dioxide and other gases.

MOFs consist of a metal oxide center surrounded by organic “linker” molecules to form a highly porous three-dimensional crystal framework. When a solvent molecule is applied during the formation of the MOF and is subsequently removed, the result is an unsaturated “open” metal site MOF that has an especially strong affinity for carbon dioxide.

“MOFs have an extremely large internal surface area and, compared to other common adsorbents, promise very specific customization of their chemistry and could dramatically lower parasitic energy costs in coal-burning power plants,” Smit says.

“However, there are potentially millions of variations of MOFs and since from a practical standpoint we can only synthesize a very small fraction of these materials, the search for the right ones could take years. Our model saves this time by enabling us to synthesize only those that are most ideal.”

Force field models developed to predict the adsorption properties of other MOFs typically underestimate the properties for open metal site MOFs by two orders of magnitude. This is because open metal site MOFs impose very different chemical environments from the MOFs that were considered in the original development of force field models.

Smit and his colleagues met the challenge of open site MOFs using state-of-the-art quantum chemical calculations and a strategy based on the non-empirical model potential (NEMO) methodology.

“Under this NEMO methodology, the total electronic interaction energy obtained from quantum chemical calculations is decomposed into various contributing factors, such as electrostatic, repulsive, dispersion and so on,” Smit says.

“With the model we developed we were able to reproduce the experimental adsorption isotherms of carbon dioxide and molecular nitrogen and correctly predict the mixture isotherms at flue-gas conditions in Mg-MOF-74, an open metal site MOF that has emerged as one of the most promising for carbon dioxide capture.”

The generality of their methodology should enable Smit and his colleagues to develop force field models for broad combinations of different metals, linkers, and topologies. Work is already underway to apply the model to new amine-based systems for removing carbon dioxide from flue exhaust.

Co-authors are Allison Dzubak, Li-Chiang Lin, Jihan Kim, Joseph Swisher, Roberta Poloni, and Sergey Maximoff.

This research was supported by the Department of Energy (DOE) Office of Science in part through the Center for Gas Separations, an Energy Frontier Research Center, and the by DOE’s Advanced Research Projects Agency-Energy (ARPA-E), and by the Deutsche Forschungsgemeinschaft.

Researchers made use of the US DOE’s Lawrence Berkeley National Laboratory National Energy Research Scientific Computing Center and Molecular Foundry, facilities that are also supported by the DOE Office of Science.

By.  Lynn Yarris-Berkeley




Back to homepage


Leave a comment

Leave a comment




Oilprice - The No. 1 Source for Oil & Energy News