• 5 minutes Mike Shellman's musings on "Cartoon of the Week"
  • 11 minutes Permian already crested the productivity bell curve - downward now to Tier 2 geological locations
  • 17 minutes WTI @ 67.50, charts show $62.50 next
  • 1 hour Desperate Call or... Erdogan Says Turkey Will Boycott U.S. Electronics
  • 22 hours The Discount Airline Model Is Coming for Europe’s Railways
  • 10 hours Pakistan: "Heart" Of Terrorism and Global Threat
  • 1 hour Saudi Fund Wants to Take Tesla Private?
  • 5 hours Starvation, horror in Venezuela
  • 15 hours Venezuela set to raise gasoline prices to international levels.
  • 6 hours Renewable Energy Could "Effectively Be Free" by 2030
  • 8 hours Are Trump's steel tariffs working? Seems they are!
  • 2 days Newspaper Editorials Across U.S. Rebuke Trump For Attacks On Press
  • 2 days Batteries Could Be a Small Dotcom-Style Bubble
  • 20 hours Corporations Are Buying More Renewables Than Ever
  • 1 day Scottish Battery ‘Breakthrough’ Could Charge Electric Cars In Seconds
  • 2 days WTI @ 69.33 headed for $70s - $80s end of August
All-Time Low Spare Capacity Could Send Oil To $150

All-Time Low Spare Capacity Could Send Oil To $150

Many oil markets watchers have…

Oil Prices Fall Despite Supply Fears

Oil Prices Fall Despite Supply Fears

Oil prices started the day…

Oak Ridge Labs Develops New Device For Lighter, Faster Cars

U.S. government scientists have developed a lighter, stronger and more efficient power inverter – “the heart of an electric vehicle” – that could make electric cars a lot like the inverters themselves: lighter, more powerful and more efficient.

The U.S. Department of Energy’s Oak Ridge National Laboratories reports that its scientists used unusual semiconductors and 3-D printing to create their inverter, which transforms direct electric current from the car’s battery into the alternating current needed by the motor.

The unusual semiconductors include silicon carbide, which is known as a “wide-bandgap” material that can function properly at high temperatures and more efficiently than traditional semiconductors. As a result, Oak Ridge’s 30-kilowatt prototype inverter has a much higher power density with a significant reduction in weight and volume.

Related: 3-D Printed Car From Start To Finish In Less Than Two Days

This greater heat, though, can drain electrical conductivity in nearby parts that need to be cooler, so the researchers turned to the precision of 3-D printing, also called additive manufacturing, to improve the design of the device’s heat sink to keep the inverter cooler.

“With additive manufacturing, complexity is basically free, so any shape or grouping of shapes can be imagined and modeled for performance,” said Madhu Chinthavali, who led the Power Electronics and Electric Machinery Group that developed the new inverter.

Using the 3-D printer also allowed the researchers to reduce the weight of the device as well as the amount of power it wastes. As for wide-bandgap silicon carbide, its benefits are many, including improved efficiency and reliability, tolerance for higher temperatures, lighter weight and greater power density.

“Wide-bandgap technology enables devices to perform more efficiently at a greater range of temperatures than conventional semiconductor materials,” Chinthavali said. “This is especially useful in a power inverter, which is the heart of an electric vehicle.”

The new power inverter isn’t only about 3-D printing and silicon carbide, though. Chinthavali’s team also came up with a design that includes several small capacitors – which accumulate and hold electrical charges – that are lined up in parallel rows. The capacitors’ size and their arrangement make them run cooler than larger, costlier capacitors used in conventional inverters.

Related: New Generator Powered Solely By Heat, Not Fuel

Oak Ridge’s prototype has 50 parts that were created on a 3-D printer, which lead to a power-transfer efficiency of nearly 99 percent. The team now plans to use additive manufacturing to create all the parts in its next effort.

This isn’t the first time Oak Ridge has been involved in using additive manufacturing in automotive research. It recently teamed up with Local Motors of Phoenix, Ariz., to develop a large 3-D printer to manufacture an entire car, called the Strati.

This small two-seater appears to be fairly successful for a prototype. It has a range of 120 miles before needing a recharge, but only achieves a speed of 40 mph. By comparison, another electric car, the Chevrolet Volt, has only one-third the Strati’s range, but can accelerate up to highway speeds.

By Andy Tully of Oilprice.com

More Top Reads From Oilprice.com:



Join the discussion | Back to homepage

Leave a comment

Leave a comment

Oilprice - The No. 1 Source for Oil & Energy News