• 3 hours Iraq Struggles To Replace Damaged Kirkuk Equipment As Output Falls
  • 8 hours British Utility Companies Brace For Major Reforms
  • 12 hours Montenegro A ‘Sweet Spot’ Of Untapped Oil, Gas In The Adriatic
  • 14 hours Rosneft CEO: Rising U.S. Shale A Downside Risk To Oil Prices
  • 15 hours Brazil Could Invite More Bids For Unsold Pre-Salt Oil Blocks
  • 16 hours OPEC/Non-OPEC Seek Consensus On Deal Before Nov Summit
  • 17 hours London Stock Exchange Boss Defends Push To Win Aramco IPO
  • 18 hours Rosneft Signs $400M Deal With Kurdistan
  • 20 hours Kinder Morgan Warns About Trans Mountain Delays
  • 1 day India, China, U.S., Complain Of Venezuelan Crude Oil Quality Issues
  • 1 day Kurdish Kirkuk-Ceyhan Crude Oil Flows Plunge To 225,000 Bpd
  • 1 day Russia, Saudis Team Up To Boost Fracking Tech
  • 2 days Conflicting News Spurs Doubt On Aramco IPO
  • 2 days Exxon Starts Production At New Refinery In Texas
  • 2 days Iraq Asks BP To Redevelop Kirkuk Oil Fields
  • 3 days Oil Prices Rise After U.S. API Reports Strong Crude Inventory Draw
  • 3 days Oil Gains Spur Growth In Canada’s Oil Cities
  • 3 days China To Take 5% Of Rosneft’s Output In New Deal
  • 3 days UAE Oil Giant Seeks Partnership For Possible IPO
  • 3 days Planting Trees Could Cut Emissions As Much As Quitting Oil
  • 3 days VW Fails To Secure Critical Commodity For EVs
  • 3 days Enbridge Pipeline Expansion Finally Approved
  • 3 days Iraqi Forces Seize Control Of North Oil Co Fields In Kirkuk
  • 3 days OPEC Oil Deal Compliance Falls To 86%
  • 3 days U.S. Oil Production To Increase in November As Rig Count Falls
  • 4 days Gazprom Neft Unhappy With OPEC-Russia Production Cut Deal
  • 4 days Disputed Venezuelan Vote Could Lead To More Sanctions, Clashes
  • 4 days EU Urges U.S. Congress To Protect Iran Nuclear Deal
  • 4 days Oil Rig Explosion In Louisiana Leaves 7 Injured, 1 Still Missing
  • 4 days Aramco Says No Plans To Shelve IPO
  • 6 days Trump Passes Iran Nuclear Deal Back to Congress
  • 6 days Texas Shutters More Coal-Fired Plants
  • 7 days Oil Trading Firm Expects Unprecedented U.S. Crude Exports
  • 7 days UK’s FCA Met With Aramco Prior To Proposing Listing Rule Change
  • 7 days Chevron Quits Australian Deepwater Oil Exploration
  • 7 days Europe Braces For End Of Iran Nuclear Deal
  • 7 days Renewable Energy Startup Powering Native American Protest Camp
  • 7 days Husky Energy Set To Restart Pipeline
  • 8 days Russia, Morocco Sign String Of Energy And Military Deals
  • 8 days Norway Looks To Cut Some Of Its Generous Tax Breaks For EVs
Alt Text

Can Deep Water Wind Farms Power The World?

A recent study suggests that…

Alt Text

The Two Nations Leading The Wind Power Race

UK and China have joined…

Alt Text

Tesla’s New Frontier: Batteries And Wind

Electric car builder Tesla and…

Will Airborne Wind Turbines Soon Float Above Our Cities?

Will Airborne Wind Turbines Soon Float Above Our Cities?

A few months ago, and without much fanfare, Fairbanks, Alaska hoisted a large, oval, 35-foot diameter wind turbine to an altitude of 1,000 feet over the town. From high above, the BAT (Buoyant Air Turbine) generates power from gusts of wind far stronger than those powering regular wind turbines.

So how is the first airborne wind turbine to be deployed doing compared to the more familiar ground-based turbines?

A 1-megawatt (1MW) turbine on the ground generates on average between 2.4 million and 4 million kilowatt hours (kWh) of energy a year, which is enough to power between 240 and 400 houses. The BAT -- although it catches winds of up to eight times the force of ground turbines – has so far only generated enough power to meet the needs of about a dozen homes.

Altaeros, a start-up company created in 2010 at the Massachusetts Institute of Technology, designed the BAT, which consists of a helium-filled shell made from industrial fabrics. It conveys electricity to the ground through its tethers and is operated from ground stations made out of converted shipping containers.

Altaeros’ CEO Ben Glass says the BAT eliminates many of the traditional requirements of wind turbines, such as the need for cranes and towers to lift them hundreds of feet off the ground: automated tethers allow the BAT to rise and fall. Altaeros also claims BATs are quieter and easier to maintain, and cost 90 percent less to install than traditional wind turbines.

Although the BAT can’t match the output of organized wind farms directly tied into the electric grid, it -- and similar airborne wind turbine systems being developed by Google’s Makani Power, Germany’s Enerkite and Canada’s LTA Windpower -- is important because it can do what conventional turbines cannot: provide energy to remote sites that are off the grid.

The 12 households being powered in Fairbanks are not hooked up to the state’s electrical grid, and in a state that pays 17.57 cents per kWh of energy, compared to the U.S. average of 13.4 cents, that makes the BAT an attractive option.

And that group of households isn’t even a good measure of the BAT’s potential. Prior to its deployment in Alaska, the BAT was tested above the skies of Maine and was able to draw twice as much power as a conventional turbine. This could be achieved at an altitude of 1,000 feet – half the original estimation of 2,000 feet -- which means the BAT performs well far below most air traffic.

Makani Power is also looking beyond the possibility of static turbines -- both on the ground and in the air. It has developed a turbine that looks like a plane and mimics the wingtip of a wind turbine as it flies. Tethered to the ground, the Makani Turbine, now being developed in the secretive Google X laboratory, flies in a flat vertical loop. The craft, with a diameter of 24 feet, flies between 120 and 300 feet in the air, generating amounts of energy with its repeated looping flight that far outpaces the capacity of a normal turbine.

The company says the small Makani Turbine eliminates “90 percent of the materials and 50 percent of the installed costs of conventional wind turbines,” adding, “The tether allows our turbine to access better wind at high altitudes, which makes it cheaper to install in places where traditional turbines don’t work.”

And that’s the real benefit of airborne wind turbines: Rather than competing with established wind farms, they can be deployed in off-grid areas, such as island and remote communities, off-shore sites, mining sites, and even where disasters have occurred.

Expectations are that it will be a few years before Caribbean islands, remote Mongolian villages, or mines in the Australian outback have BATs or Makani Turbines soaring above them. But with a powerhouse like Google on the case, it may happen sooner than later.

By. Chris Dalby of Oilprice.com




Back to homepage


Leave a comment

Leave a comment




Oilprice - The No. 1 Source for Oil & Energy News