• 1 hour LNG Glut To Continue Into 2020s, IEA Says
  • 3 hours Oil Nears $52 With Record OPEC Deal Compliance
  • 6 hours Saudi Aramco CEO Affirms IPO On Track For H2 2018
  • 8 hours Canadia Ltd. Returns To Sudan For First Time Since Oil Price Crash
  • 10 hours Syrian Rebel Group Takes Over Oil Field From IS
  • 3 days PDVSA Booted From Caribbean Terminal Over Unpaid Bills
  • 3 days Russia Warns Ukraine Against Recovering Oil Off The Coast Of Crimea
  • 3 days Syrian Rebels Relinquish Control Of Major Gas Field
  • 3 days Schlumberger Warns Of Moderating Investment In North America
  • 3 days Oil Prices Set For Weekly Loss As Profit Taking Trumps Mideast Tensions
  • 3 days Energy Regulators Look To Guard Grid From Cyberattacks
  • 3 days Mexico Says OPEC Has Not Approached It For Deal Extension
  • 3 days New Video Game Targets Oil Infrastructure
  • 3 days Shell Restarts Bonny Light Exports
  • 3 days Russia’s Rosneft To Take Majority In Kurdish Oil Pipeline
  • 4 days Iraq Struggles To Replace Damaged Kirkuk Equipment As Output Falls
  • 4 days British Utility Companies Brace For Major Reforms
  • 4 days Montenegro A ‘Sweet Spot’ Of Untapped Oil, Gas In The Adriatic
  • 4 days Rosneft CEO: Rising U.S. Shale A Downside Risk To Oil Prices
  • 4 days Brazil Could Invite More Bids For Unsold Pre-Salt Oil Blocks
  • 4 days OPEC/Non-OPEC Seek Consensus On Deal Before Nov Summit
  • 4 days London Stock Exchange Boss Defends Push To Win Aramco IPO
  • 4 days Rosneft Signs $400M Deal With Kurdistan
  • 4 days Kinder Morgan Warns About Trans Mountain Delays
  • 5 days India, China, U.S., Complain Of Venezuelan Crude Oil Quality Issues
  • 5 days Kurdish Kirkuk-Ceyhan Crude Oil Flows Plunge To 225,000 Bpd
  • 5 days Russia, Saudis Team Up To Boost Fracking Tech
  • 5 days Conflicting News Spurs Doubt On Aramco IPO
  • 5 days Exxon Starts Production At New Refinery In Texas
  • 5 days Iraq Asks BP To Redevelop Kirkuk Oil Fields
  • 6 days Oil Prices Rise After U.S. API Reports Strong Crude Inventory Draw
  • 6 days Oil Gains Spur Growth In Canada’s Oil Cities
  • 6 days China To Take 5% Of Rosneft’s Output In New Deal
  • 6 days UAE Oil Giant Seeks Partnership For Possible IPO
  • 6 days Planting Trees Could Cut Emissions As Much As Quitting Oil
  • 6 days VW Fails To Secure Critical Commodity For EVs
  • 6 days Enbridge Pipeline Expansion Finally Approved
  • 6 days Iraqi Forces Seize Control Of North Oil Co Fields In Kirkuk
  • 6 days OPEC Oil Deal Compliance Falls To 86%
  • 7 days U.S. Oil Production To Increase in November As Rig Count Falls

Breaking News:

LNG Glut To Continue Into 2020s, IEA Says

Alt Text

Unusual Ruling Could Impact Cheap Solar Panel Imports

The U.S. International Trade Commission…

Alt Text

Solar Costs Are Dropping Much Faster Than Expected

The U.S. Department of Energy…

Alt Text

Ambitious Solar Project Takes Root In Tunisia

This small northern-African nation could…

Professor Chris Rhodes

Professor Chris Rhodes

Professor Chris Rhodes is a writer and researcher. He studied chemistry at Sussex University, earning both a B.Sc and a Doctoral degree (D.Phil.); rising to…

More Info

The Potential and Future of Concentrated Solar Power

The Potential and Future of Concentrated Solar Power

Concentrating Solar Power (CSP) systems employ lenses or mirrors coupled with tracking systems to concentrate a large area of sunlight into a small beam, rather in analogy with the simple and familiar burning-lense. The concentrated energy may be used to heat a central “boiler” to run a power plant fitted with a conventional steam-turbine from which electricity is generated in the usual manner. A quite broad range of methods may be used to accomplish this, e.g. the parabolic trough, the solar (parabolic) dish and the solar power tower.

All such systems contain a working fluid which is heated by the concentrated sunlight, and then used to generate power or to store energy. In a parabolic trough there is a linear parabolic reflector which concentrates sunlight onto a receiver oriented along its focal line. By means of a tracking system, the reflector follows the Sun during the daylight hours along a single axis. Trough systems are the most efficient of any solar technology in regard to the land area occupied by the plant. The SEGS plants in California and the Acciona Nevada Solar One near Boulder City, Nevada are based on trough systems.

A parabolic (solar) dish system consists of a single parabolic reflector which concentrates light at the focal point of the reflector, which tracks the Sun along two axes. Of all the CSP technologies, parabolic dish systems are the most efficient. The 50 kW Big Dish in Canberra, Australia is an example of this technology. The Stirling solar dish combines a parabolic concentrating dish with a Stirling heat engine which drives an electric generator. The term “Stirling” refers to the fact that the device operates on a simple heat-engine principle. Stirling solar energy production is more efficient than photovoltaic cells and the technology has a longer lifetime.

A solar power tower consists of an array of dual-axis tracking reflectors (heliostats) that concentrate light on a central receiver at the top of a tower. The receiver contains a working fluid to absorb the heat, and can be seawater. The working fluid in the receiver is heated to 500-1000 °C and then used as a heat source to generate power or to store energy. Concentrating thermal power is the main technology proposed for a cooperation to produce electricity and desalinated water in the arid regions of North Africa and Southern Europe by the Trans-Mediterranean Renewable Energy Cooperation Desertec.

The potential and future of concentrated solar power was investigated and reported from a study by Greenpeace International, the European Solar Thermal Electricity Association, and the International Energy Agency's SolarPACES group. Remarkably, it was concluded that concentrated solar power could provide 25% of the world's energy needs by 2050. To achieve this, however, would require an increase in world investment would from 2 billion euros to 92.5 billion euros over that same time interval, although it further predicted that the price of electricity would drop from the present 0.15 - 0.23 euros currently per kilowatt, to 0.10 - 0.14 euros a kilowatt.

We always hear this, however, in the inauguration of all new technologies that the power production by their means will be cheaper, most notably (or notoriously) atomic power that was supposed to provide “electricity too cheap too meter”. Spain is the world leader in concentrated solar power technology, with more than 50 projects underway. The Desertec scheme has been described as being part of an overall intention to create "a new carbon-free network linking Europe, the Middle East and North Africa".

Related Reading.
C.J.Rhodes, "Solar Energy: Principles and Possibilities", Science Progress, 2010, Vol. 93, 37 - 112.

By. Professor Chris Rhodes

Professor Chris Rhodes is a writer and researcher. He studied chemistry at Sussex University, earning both a B.Sc and a Doctoral degree (D.Phil.); rising to become the youngest professor of physical chemistry in the U.K. at the age of 34.
A prolific author, Chris has published more than 400 research and popular science articles (some in national newspapers: The Independent and The Daily Telegraph)
He has recently published his first novel, "University Shambles" was published in April 2009 (Melrose Books).
http://universityshambles.com




Back to homepage


Leave a comment
  • Anonymous on October 12 2010 said:
    Maybe this kind of system become more popular in the future and we will have pollution free earth. well maybe in 20-35 years...

Leave a comment




Oilprice - The No. 1 Source for Oil & Energy News