• 2 days PDVSA Booted From Caribbean Terminal Over Unpaid Bills
  • 2 days Russia Warns Ukraine Against Recovering Oil Off The Coast Of Crimea
  • 2 days Syrian Rebels Relinquish Control Of Major Gas Field
  • 2 days Schlumberger Warns Of Moderating Investment In North America
  • 2 days Oil Prices Set For Weekly Loss As Profit Taking Trumps Mideast Tensions
  • 2 days Energy Regulators Look To Guard Grid From Cyberattacks
  • 2 days Mexico Says OPEC Has Not Approached It For Deal Extension
  • 2 days New Video Game Targets Oil Infrastructure
  • 2 days Shell Restarts Bonny Light Exports
  • 2 days Russia’s Rosneft To Take Majority In Kurdish Oil Pipeline
  • 2 days Iraq Struggles To Replace Damaged Kirkuk Equipment As Output Falls
  • 3 days British Utility Companies Brace For Major Reforms
  • 3 days Montenegro A ‘Sweet Spot’ Of Untapped Oil, Gas In The Adriatic
  • 3 days Rosneft CEO: Rising U.S. Shale A Downside Risk To Oil Prices
  • 3 days Brazil Could Invite More Bids For Unsold Pre-Salt Oil Blocks
  • 3 days OPEC/Non-OPEC Seek Consensus On Deal Before Nov Summit
  • 3 days London Stock Exchange Boss Defends Push To Win Aramco IPO
  • 3 days Rosneft Signs $400M Deal With Kurdistan
  • 3 days Kinder Morgan Warns About Trans Mountain Delays
  • 3 days India, China, U.S., Complain Of Venezuelan Crude Oil Quality Issues
  • 4 days Kurdish Kirkuk-Ceyhan Crude Oil Flows Plunge To 225,000 Bpd
  • 4 days Russia, Saudis Team Up To Boost Fracking Tech
  • 4 days Conflicting News Spurs Doubt On Aramco IPO
  • 4 days Exxon Starts Production At New Refinery In Texas
  • 4 days Iraq Asks BP To Redevelop Kirkuk Oil Fields
  • 5 days Oil Prices Rise After U.S. API Reports Strong Crude Inventory Draw
  • 5 days Oil Gains Spur Growth In Canada’s Oil Cities
  • 5 days China To Take 5% Of Rosneft’s Output In New Deal
  • 5 days UAE Oil Giant Seeks Partnership For Possible IPO
  • 5 days Planting Trees Could Cut Emissions As Much As Quitting Oil
  • 5 days VW Fails To Secure Critical Commodity For EVs
  • 5 days Enbridge Pipeline Expansion Finally Approved
  • 5 days Iraqi Forces Seize Control Of North Oil Co Fields In Kirkuk
  • 5 days OPEC Oil Deal Compliance Falls To 86%
  • 6 days U.S. Oil Production To Increase in November As Rig Count Falls
  • 6 days Gazprom Neft Unhappy With OPEC-Russia Production Cut Deal
  • 6 days Disputed Venezuelan Vote Could Lead To More Sanctions, Clashes
  • 6 days EU Urges U.S. Congress To Protect Iran Nuclear Deal
  • 6 days Oil Rig Explosion In Louisiana Leaves 7 Injured, 1 Still Missing
  • 6 days Aramco Says No Plans To Shelve IPO
Brian Westenhaus

Brian Westenhaus

Brian is the editor of the popular energy technology site New Energy and Fuel. The site’s mission is to inform, stimulate, amuse and abuse the…

More Info

Solar Energy May Soon Get Much Cheaper

Solar Energy May Soon Get Much Cheaper

Scientists from the California Institute of Technology (Caltech) have developed a new solar cell that they hope will cost a tiny fraction of current production. The new cells consist of tiny silicon wires that measure a mere 1-micron in diameter. These wires are embedded lengthwise and perpendicular into plastic plates where they convert light into electricity at an exceptional rate of efficiency. Any light that is leftover bounces around inside the wire matrix until it finds another wire that can absorb it, thus nearly all the light is captured and converted into electricity.

Professor Harry Atwater at his namesake research group at Caltech explains the new solar material made of tiny silicon wires could “dramatically reduce the cost of making a silicon solar cell. Instead of the expensive process of making a wafer and slicing it up with a saw, throwing away two thirds of it,” says Atwater, “We grow the material and literally peel it off. The plastic sheet is peeled off like scotch tape off a tape dispenser.”

The savings in the new cell technology is that only 2% of the cell is composed of semiconductors – the most expensive component. The other 98% is made from inexpensive plastic, which should translate into significantly lower prices for consumers compared to existing solar cell technologies.  That lower price is in inverse proportion to the rate at which the cells convert sunlight to electrical power.

 

Silicon Wire Photon Collector
Silicon Wire Photon Collector.

Professor Atwater and his colleagues used microscale silicon wires (microwires) slightly thicker than nanowires, and poured a polymer containing light-reflecting nanoparticles into the spaces between them. The polymer scatters unabsorbed light back onto the rods and this, combined with a silver reflecting layer at the bottom of the device, allows the cells to absorb up to 85 per cent of incoming light.  But losses mostly from imperfections in the crystal structure of the microwires drive the overall efficiency below the 20 per cent achieved by the best crystalline silicon cells.

The point is that while these cells are merely as efficient as very good photovoltaic panels, they use only about a hundredth of the material. Also the new design is highly flexible: built on a bed of silicon, Atwater’s micrwire arrays can simply be peeled off and stuck pretty much wherever you want. “They could even be integrated into buildings, as components that match the shape of roof tiles,” says Atwater. He has started up a company, Alta Devices, to do just that, and has recently received research funding from the US Department of Energy.

Wire Array
Wire Array Structure Ready for Optical Measurements.

At about the same thickness as conventional photovoltaic cells, Atwater’s new cells contain far less silicon. The team is currently working on expanding the voltage capacity and size of the cells in order to manufacture large, flexible sheets that can be manufactured inexpensively using “roll-to-roll” fabrication equipment.

The Caltech team had Dave Bullock from Wired.com in for a tour.  The article is short but the photos quite good. Over the course of nine photos one comes away with a good idea of the production process. It’s worth the click and a look.  The full paper from Nature Materials Letters is available in a pdf download.

There are two primary types of photovoltaic cells. The first is a solid silicon-based PV cell that is very efficient, but also expensive to make and relatively fragile. The second is a thin film cell, which is relatively cheap to make but not as efficient. The Caltech group’s new microwire material potentially bridges that gap, creating a photovoltaic cell that should be low cost to manufacture, but which is close to the efficiency of traditional silicon-based solar panels and perhaps not so easily broken.

This is just round one in the research.  Intuition suggests that much of the regular silicon research might well transfer to Atwater’s concept. We’ll see – this idea is worth watching and it seems Atwater’s team is looking into it as well.

By Brian Westenhaus of NewEnergyandFuel.com

OilPrice.com is the no.1 source for crude oil information and oil prices

Source: A New Kind Of Photovoltaic Solar Cell




Back to homepage


Leave a comment
  • Anonymous on June 11 2010 said:
    NOW this WE LIKE a LOT !!! something for the little guy that is busting his back while the fat cats are getting the solar now for a change we like this ..
  • G on April 24 2012 said:
    Live in a large mobile home, needs a respray but would LOVE to wrap in a film of affordable PV material- mind you cant believe reductions in price on panels etc over last 18 months- A 250 watt panel now costs what 80 watts would have cost you 18 months back....
    be great if they could make it a spray on product a PV lacquer you could cover the car,home, etc etc with.
    leave it to techies to develop and the Chinese to drive the price down..

Leave a comment




Oilprice - The No. 1 Source for Oil & Energy News