• 1 hour Gunmen Kidnap Nigerian Oil Workers In Oil-Rich Delta Area
  • 3 hours Libya’s NOC Restarts Oil Fields
  • 5 hours US Orion To Develop Gas Field In Iraq
  • 3 days U.S. On Track To Unseat Saudi Arabia As No.2 Oil Producer In the World
  • 3 days Senior Interior Dept. Official Says Florida Still On Trump’s Draft Drilling Plan
  • 3 days Schlumberger Optimistic In 2018 For Oilfield Services Businesses
  • 3 days Only 1/3 Of Oil Patch Jobs To Return To Canada After Downturn Ends
  • 3 days Statoil, YPF Finalize Joint Vaca Muerta Development Deal
  • 3 days TransCanada Boasts Long-Term Commitments For Keystone XL
  • 3 days Nigeria Files Suit Against JP Morgan Over Oil Field Sale
  • 3 days Chinese Oil Ships Found Violating UN Sanctions On North Korea
  • 4 days Oil Slick From Iranian Tanker Explosion Is Now The Size Of Paris
  • 4 days Nigeria Approves Petroleum Industry Bill After 17 Long Years
  • 4 days Venezuelan Output Drops To 28-Year Low In 2017
  • 4 days OPEC Revises Up Non-OPEC Production Estimates For 2018
  • 4 days Iraq Ready To Sign Deal With BP For Kirkuk Fields
  • 4 days Kinder Morgan Delays Trans Mountain Launch Again
  • 4 days Shell Inks Another Solar Deal
  • 5 days API Reports Seventh Large Crude Draw In Seven Weeks
  • 5 days Maduro’s Advisors Recommend Selling Petro At Steep 60% Discount
  • 5 days EIA: Shale Oil Output To Rise By 1.8 Million Bpd Through Q1 2019
  • 5 days IEA: Don’t Expect Much Oil From Arctic National Wildlife Refuge Before 2030
  • 5 days Minister Says Norway Must Prepare For Arctic Oil Race With Russia
  • 5 days Eight Years Late—UK Hinkley Point C To Be In Service By 2025
  • 5 days Sunk Iranian Oil Tanker Leave Behind Two Slicks
  • 5 days Saudi Arabia Shuns UBS, BofA As Aramco IPO Coordinators
  • 5 days WCS-WTI Spread Narrows As Exports-By-Rail Pick Up
  • 6 days Norway Grants Record 75 New Offshore Exploration Leases
  • 6 days China’s Growing Appetite For Renewables
  • 6 days Chevron To Resume Drilling In Kurdistan
  • 6 days India Boosts Oil, Gas Resource Estimate Ahead Of Bidding Round
  • 6 days India’s Reliance Boosts Export Refinery Capacity By 30%
  • 6 days Nigeria Among Worst Performers In Electricity Supply
  • 6 days ELN Attacks Another Colombian Pipeline As Ceasefire Ceases
  • 7 days Shell Buys 43.8% Stake In Silicon Ranch Solar
  • 7 days Saudis To Award Nuclear Power Contracts In December
  • 7 days Shell Approves Its First North Sea Oil Project In Six Years
  • 7 days China Unlikely To Maintain Record Oil Product Exports
  • 7 days Australia Solar Power Additions Hit Record In 2017
  • 7 days Morocco Prepares $4.6B Gas Project Tender
Alt Text

How China Is Killing India’s Solar Industry

In India’s race to boost…

Alt Text

New Breakthrough Boosts Solar Fuel Efficiency

A new breakthrough from researchers…

Brian Westenhaus

Brian Westenhaus

Brian is the editor of the popular energy technology site New Energy and Fuel. The site’s mission is to inform, stimulate, amuse and abuse the…

More Info

Panasonic's New Process for Artificial Photosynthesis Looks Promising

Panasonic's New Process for Artificial Photosynthesis Looks Promising

Tuesday the web started noticing that Panasonic has developed an artificial photosynthesis system, which converts carbon dioxide (CO2) to organic materials.  A quick review of the web site commentary revealed how far the assumptions got before Panasonic got the press release open and out in English on the corporate site in Japan.

What Panasonic has developed is three major improvements in one process.

The first part is Panasonic has taken CO2 directly to formic acid, a valuable precursor to numerous petroleum like compounds including fuels.  The next phase is the efficiency approximates that of many plants, 0.2%.  Obviously, paving over areas that need shaded offers a much lower cost route to liquid fuels than soil, weather, plants, cultivation, and processing, etc.

The third part is the new technology is a simple and tough structure that could well stand up to light collection and focusing to high intensity.

That’s one very big jump indeed. No living molecules involved.

Panasonic's Artificial Photosynthesis System
Panasonic’s Artificial Photosynthesis Schematic and Experiment Photo. More details in the text below.

Panasonic’s artificial photosynthesis system converting carbon dioxide to organic materials by illuminating with sunlight is now a top world’s top efficiency of 0.2%. The efficiency level is on a comparable level with the plants commonly used for biomass energy.

The key to the system is the application of a nitride semiconductor, which makes the system simple and efficient. This development will be a foundation for building a system for capturing and converting wasted carbon dioxide from incinerators, power plants or industrial activities.

Previously, approaches to systems have had complex structures such as organic complexes or plural photo-electrodes, which makes it difficult to improve their efficiency in response to the light. Panasonic’s artificial photosynthesis system has a simple structure with highly efficient CO2 conversion, which can utilize direct sunlight or focused light.

Panasonic says they first found that a nitride semiconductor has the capability to excite the electrons with enough high energy for the CO2 reduction reaction. Nitride semiconductors have attracted attention for their potential applications in highly efficient optical and power devices for energy saving. However, its potential was revealed to extend beyond solid devices; more specifically, it can be used as a photo-electrode for CO2 reduction. Making a structure for a device through the thin film process for semiconductors, has highly improved the performance as a photo- electrode.

The CO2 reduction takes place on a metal catalyst at the opposite side of nitride semiconductor photo-electrode. See Fig. 1.  The metal catalyst plays an important role in selecting and accelerating the reaction. Here, it is noted that the system is comprised of only inorganic materials, which can reduce the CO2 with low energy loss. Because of this, the amount of reaction products is exactly proportional to the light power. This is one of the merits in such an all-inorganic system, as some working conventional systems cannot follow a general powering up of the light power because of their internal or external rate-limiting processes in the complex structures.

The nitride semiconductor and a metal catalyst system generates mainly formic acid from the CO2 and water with light at a world’s top efficiency of 0.2%. The efficiency is comparable to the level of real plants used in the biomass energy source.  Formic acid is an important chemical in industry, most commonly known for dye and fragrances.

The reaction rate is completely proportional to the light power due to the low energy loss with a simple structure; in other words, the system can respond to focused light. This will make it possible to design a simple and compact system for capturing and converting waste carbon dioxide from incinerators and electric generation plants.

That’s a bit repetitive, but follows the intent of the translated press release on the Panasonic site.

The schematic is quite tantalizing and revealing.  Assuming the whole of the inputs and outputs are disclosed the process is consuming all desirable inputs and expelling no undesirable ones.  There is sure to be more to all of this, but for now the folks at Panasonic have offered up a great leap of progress for using solar energy in a practical way.

The patent work is underway.  Panasonic personnel presented the technology in part at 19th International Conference on the Conversion and Storage of Solar Energy held on Pasadena, United States on July 30, 2012.

OK.  Congratulations, good work, keep it coming.

By. Brian Westenhaus

Source: A Big Jump Ahead For Artificial Photosynthesis




Back to homepage


Leave a comment

Leave a comment




Oilprice - The No. 1 Source for Oil & Energy News