• 2 days Shell Oil Trading Head Steps Down After 29 Years
  • 2 days Higher Oil Prices Reduce North American Oil Bankruptcies
  • 2 days Statoil To Boost Exploration Drilling Offshore Norway In 2018
  • 2 days $1.6 Billion Canadian-US Hydropower Project Approved
  • 2 days Venezuela Officially In Default
  • 2 days Iran Prepares To Export LNG To Boost Trade Relations
  • 2 days Keystone Pipeline Leaks 5,000 Barrels Into Farmland
  • 3 days Saudi Oil Minister: Markets Will Not Rebalance By March
  • 3 days Obscure Dutch Firm Wins Venezuelan Oil Block As Debt Tensions Mount
  • 3 days Rosneft Announces Completion Of World’s Longest Well
  • 3 days Ecuador Won’t Ask Exemption From OPEC Oil Production Cuts
  • 3 days Norway’s $1 Trillion Wealth Fund Proposes To Ditch Oil Stocks
  • 3 days Ecuador Seeks To Clear Schlumberger Debt By End-November
  • 3 days Santos Admits It Rejected $7.2B Takeover Bid
  • 4 days U.S. Senate Panel Votes To Open Alaskan Refuge To Drilling
  • 4 days Africa’s Richest Woman Fired From Sonangol
  • 4 days Oil And Gas M&A Deal Appetite Highest Since 2013
  • 4 days Russian Hackers Target British Energy Industry
  • 4 days Venezuela Signs $3.15B Debt Restructuring Deal With Russia
  • 4 days DOJ: Protestors Interfering With Pipeline Construction Will Be Prosecuted
  • 4 days Lower Oil Prices Benefit European Refiners
  • 4 days World’s Biggest Private Equity Firm Raises $1 Billion To Invest In Oil
  • 5 days Oil Prices Tank After API Reports Strong Build In Crude Inventories
  • 5 days Iraq Oil Revenue Not Enough For Sustainable Development
  • 5 days Sudan In Talks With Foreign Oil Firms To Boost Crude Production
  • 5 days Shell: Four Oil Platforms Shut In Gulf Of Mexico After Fire
  • 5 days OPEC To Recruit New Members To Fight Market Imbalance
  • 5 days Green Groups Want Norway’s Arctic Oil Drilling Licenses Canceled
  • 6 days Venezuelan Oil Output Drops To Lowest In 28 Years
  • 6 days Shale Production Rises By 80,000 BPD In Latest EIA Forecasts
  • 6 days GE Considers Selling Baker Hughes Assets
  • 6 days Eni To Address Barents Sea Regulatory Breaches By Dec 11
  • 6 days Saudi Aramco To Invest $300 Billion In Upstream Projects
  • 6 days Aramco To List Shares In Hong Kong ‘For Sure’
  • 6 days BP CEO Sees Venezuela As Oil’s Wildcard
  • 6 days Iran Denies Involvement In Bahrain Oil Pipeline Blast
  • 9 days The Oil Rig Drilling 10 Miles Under The Sea
  • 9 days Baghdad Agrees To Ship Kirkuk Oil To Iran
  • 9 days Another Group Joins Niger Delta Avengers’ Ceasefire Boycott
  • 9 days Italy Looks To Phase Out Coal-Fired Electricity By 2025
Brian Westenhaus

Brian Westenhaus

Brian is the editor of the popular energy technology site New Energy and Fuel. The site’s mission is to inform, stimulate, amuse and abuse the…

More Info

New Super Thin Solar Cell Reduces Silicon Wastage by 95%

New Super Thin Solar Cell Reduces Silicon Wastage by 95%

Erik Marstein, head of the Norwegian Research Center for Solar Cell Technology, head of Research for the solar cell unit at the Institute for Energy Technology (IFE) at Kjeller outside of Oslo, and an Associate Professor in the Department of Physics at the University of Oslo (UiO) with Professor Aasmund Sudbø in the Department of Physics at UiO are developing the next generation of solar cells to be twenty times thinner than current solar cells.

Marstein explains the background with, “The most obvious way ahead is to make very thin solar cell slices, without increasing costs. The thinner the solar cells become, the easier it is to extract the electricity. In principle, there will therefore be a higher voltage and more electricity in thinner cells. We are now developing solar cells that are at least as good as the current ones, but that can be made with just one twentieth of the silicon. This means that the consumption of silicon can be reduced by 95 per cent.”

Professor Aasmund Sudbø and Head of Research Erik Marstein
Professor Aasmund Sudbø and Head of Research Erik Marstein have used lots of innovation with light to reduce the thickness of solar cells by 95 per cent.

The reduction is significant because pure silicon does not exist in nature and it binds readily to other elements. In order for solar cells to function, the silicon plate must consist of at minimum 99.9999% silicon.  Pure silicon is created in smelters at 2,000 degrees Celsius requiring a lot of energy.  Then its cut into slices thin enough for solar panels. Only half become solar cells. The rest turns into sawdust.

“About 100,000 metric tons of silicon is consumed every year. However, there is obviously something fundamentally wrong when half of the silicon must be thrown away during the manufacturing process,” said Marstein.  The price of solar cells is falling steadily. Today, solar panels cost a half a Euro for every watt. Only four years ago, the price was two Euros per watt. “It is difficult to make money producing solar cells at current prices. To make money, solar cells must be manufactured much more cheaply,” he added.

Related article: Thin Film Solar Cell Efficiency Continues to Improve

The problem is thinner plates have less sunlight trapped because of the wavelengths of light. Blue light has a much shorter wavelength than red light. Blue light can be trapped by plates that are only a few micrometers thick. In order to trap the red light, the silicon plate must be almost one millimeter thick. For infrared light, the plate must be even thicker.  But when the solar cell plate is as thin as 20 micrometers, too much of the light will go straight through.

Yet the “thickness” of current solar cells can be doubled by a mirror. By reflecting the light, the passage of the light through the plate is doubled so that a 20 micrometer think solar cell with a mirror will in theory be 40 micrometers thick. However, the Norwegian group thinks that is not enough. Furthermore, the current mirrors are far from perfect: they only reflect 70 to 80 per cent of the light.

Now for the new technology – Marstein said, “This is where the magic comes in. We are trying every possible wonderful trick with light. Our trick is to deceive the sunlight into staying longer in the solar cell. This extends the duration of the sunlight’s passage within the solar cell.”  This is called light harvesting.

The research group is now making a back sheet peppered with periodic structures, to direct exactly where the light should go. They have managed to force the light to move sideways.

“We can increase the apparent thickness 25 times by forcing the light up and down all the time. We have calculated what this back sheet must look like and are currently studying which structures work,” Marstein exclaims.

Another of the options is to cover the entire back sheet with Uglestad microbeads, which is one of the greatest Norwegian inventions of the previous century. Uglestad microbeads are very small plastic spheres. Each sphere is exactly the same size.

Marstein said, “We can force the Uglestad microbeads to lie close together on the silicon surface, in an almost perfect periodic pattern. Laboratory trials have shown that the microbeads can be used as a mask.” Additionally, Doctoral Research Fellow Jostein Thorstensen shows that lasers are well suited to etch indentations around the microbeads.

Related article: Shedding Some Light on the Solar Debate

These are major improvements.  Marstein allows, “We are now investigating whether this and other methods can be scaled up for industrial production. We have great faith in this, and are currently in discussions with multiple industrial partners, but we cannot yet say who.”

The Norwegian hunt isn’t over with this.  To trap even more light in the solar cell, Jo Gjessing has completed a doctorate on how to make asymmetrical micro indentations on the back of the silicon slice. “Cylinders, cones and hemispheres are symmetrical shapes. We have proposed a number of structures that break the symmetry. Our calculations show that asymmetrical microindentations can trap even more of the sunlight,” Marstein adds.

Gjessing’s work means that 20 micrometer solar cells with symmetrical micro indentations are as effective as 16 micrometer plates with asymmetrical indentations. This means that silicone consumption can be reduced by another 20 per cent.

“Our main goal has been to get the same amount of electricity from thinner cells. We will be very satisfied even if our new solar cells are 30 micrometers”, notes Professor Aasmund Sudbø.

The UiO press release also hints there are other developments coming.  The release said, “The new solar cells are produced in different ways, for instance by splitting the thin silicone foil or growing thin silicon films. And the extra bonus? Silicon wastage is minimal.”

Well, that’s a lot for just one press release.  The news has been picked up pretty well.  Still, there are a lot of unanswered questions, but if the silicon costs go down anything like 95% there will be a lot of resources to do the new silicon cell structure processing.
We’ll see!

By. Brian Westenhaus

Source: A Cheaper Super Thin Solar Cell

Back to homepage

Leave a comment

Leave a comment

Oilprice - The No. 1 Source for Oil & Energy News