• 5 minutes 'No - Deal Brexit' vs 'Operation Fear' Globalist Pushback ... Impact to World Economies and Oil
  • 8 minutes China has *Already* Lost the Trade War. Meantime, the U.S. Might Sanction China’s Largest Oil Company
  • 12 minutes Will Uncle Sam Step Up and Cut Production
  • 19 mins OPEC will consider all options. What options do they have ?
  • 11 hours Danish Royal Palace ‘Surprised’ By Trump Canceling Trip
  • 14 hours Trump vs. Xi Trade Battle, Running Commentary from Conservative Tree House
  • 6 hours Not The Onion: Vivienne Westwood Says Greta Thunberg Should Run the World
  • 13 hours NATGAS, LNG, Technology, benefits etc , cleaner global energy fuel
  • 11 hours A legitimate Request: France Wants Progress In Ukraine Before Russia Returns To G7
  • 5 hours What to tell my students
  • 20 hours With Global Warming Greenland is Prime Real Estate
  • 1 day Recession Jitters Are Rising. Is There Reason To Worry?
  • 18 hours China Threatens to Withhold Rare Earth Metals
  • 1 day TRUMP'S FORMER 'CHRISTIAN LIAISON' SAYS DEEPWATER HORIZON DISASTER WAS GOD'S PUNISHMENT FOR OBAMA ISRAEL DIVISION
  • 1 day Maybe 8 to 10 "good" years left in oil industry * UAE model for Economic Deversification * Others spent oil billions on funding terrorism, wars, suppressing dissidents, building nukes * Too late now
  • 1 day CLIMATE PANIC! ELEVENTY!!! "250,000 people die a year due to the climate crisis"
Green Futures

Green Futures

This article originally appeared in Green Futures magazine. Green Futures is the leading international magazine on environmental solutions and sustainable futures, published by Forum for…

More Info

Premium Content

NASA Joins the Solar Energy Space Race

A Californian technology consultancy has joined the race to launch a solar power satellite [SPS] designed to generate solar energy in space and beam it down to earth.

Artemis Innovation Management Solutions has recruited former NASA engineer John Mankins to develop a prototype, with seed funding from NASA. Mankins has already come up with the concept, called SPS-ALPHA, for ‘Solar Power Satellite via Arbitrarily Large Phase Array’. Which, very basically, means building huge platforms in space comprising concentrated photovoltaic [PV] panels and systems for wireless power transmission.

Mankins is confident about the technology; it’s the cost that worries him. Of course, it all depends on the scale. Even a small prototype, say 10-20kW, will cost a few tens of millions of dollars to build, but could be done in just two to three years. With increasing size, the cost per kW reduces – but the total bill would still be sizeable, says Mankins. He estimates the cost of a large pilot plant, in the region of 10-20MW (a thousand times larger than the prototype) could be 100 times more than the smaller version.

The total surface area of a full-size SPS plant will be vast. A 1MW system, about 25% efficient over the surface as a whole, would entail a total area of almost 3 million square metres. Building something of this scale brings with it additional challenges, such as in-space transportation, and in-space assembly and construction – and would take eight to 10 years.

But the economics are beginning to look more promising, Mankins says, with progress in the efficiency of critical components, such as PV and other solid state electronics. Multi-junction solar cells, which have been finding their feet – here on Earth – in concentrated PV systems, are made by several companies, most of whom have roadmaps for pushing up their efficiencies from 30-40% today to as much as 50% in the next few years. Further progress in computing, materials and robotics mean SPS concepts by Artemis and others could be feasible in the next 10 years.

The race is on. Already, Californian start-up Solaren has a contract under negotiation with Pacific Gas and Electric to deliver 200MW of power for at least 15 years, starting in 2016. And Japan Aerospace Exploration Agency [JAXA] is also working with the private sector to launch a test version of its SPS in 2020, a project that will cost over $20 billion.

Once a pilot plant has been demonstrated, the next challenge is industrial scale-up of SPS manufacturing and launch. Mankins suggests it will take perhaps 40 years for SPS to make a significant contribution to global energy needs. “This is exactly the same type of timeline that wind and [terrestrial] solar power have followed, looking back some 30 years to the early development of these technologies”, he says.

By. Sara Ver Bruggen of Green Futures




Download The Free Oilprice App Today

Back to homepage


Leave a comment

Leave a comment




Oilprice - The No. 1 Source for Oil & Energy News
Download on the App Store Get it on Google Play