• 4 hours PDVSA Booted From Caribbean Terminal Over Unpaid Bills
  • 6 hours Russia Warns Ukraine Against Recovering Oil Off The Coast Of Crimea
  • 8 hours Syrian Rebels Relinquish Control Of Major Gas Field
  • 9 hours Schlumberger Warns Of Moderating Investment In North America
  • 10 hours Oil Prices Set For Weekly Loss As Profit Taking Trumps Mideast Tensions
  • 11 hours Energy Regulators Look To Guard Grid From Cyberattacks
  • 12 hours Mexico Says OPEC Has Not Approached It For Deal Extension
  • 14 hours New Video Game Targets Oil Infrastructure
  • 15 hours Shell Restarts Bonny Light Exports
  • 17 hours Russia’s Rosneft To Take Majority In Kurdish Oil Pipeline
  • 23 hours Iraq Struggles To Replace Damaged Kirkuk Equipment As Output Falls
  • 1 day British Utility Companies Brace For Major Reforms
  • 1 day Montenegro A ‘Sweet Spot’ Of Untapped Oil, Gas In The Adriatic
  • 1 day Rosneft CEO: Rising U.S. Shale A Downside Risk To Oil Prices
  • 1 day Brazil Could Invite More Bids For Unsold Pre-Salt Oil Blocks
  • 1 day OPEC/Non-OPEC Seek Consensus On Deal Before Nov Summit
  • 2 days London Stock Exchange Boss Defends Push To Win Aramco IPO
  • 2 days Rosneft Signs $400M Deal With Kurdistan
  • 2 days Kinder Morgan Warns About Trans Mountain Delays
  • 2 days India, China, U.S., Complain Of Venezuelan Crude Oil Quality Issues
  • 2 days Kurdish Kirkuk-Ceyhan Crude Oil Flows Plunge To 225,000 Bpd
  • 2 days Russia, Saudis Team Up To Boost Fracking Tech
  • 3 days Conflicting News Spurs Doubt On Aramco IPO
  • 3 days Exxon Starts Production At New Refinery In Texas
  • 3 days Iraq Asks BP To Redevelop Kirkuk Oil Fields
  • 3 days Oil Prices Rise After U.S. API Reports Strong Crude Inventory Draw
  • 3 days Oil Gains Spur Growth In Canada’s Oil Cities
  • 3 days China To Take 5% Of Rosneft’s Output In New Deal
  • 3 days UAE Oil Giant Seeks Partnership For Possible IPO
  • 4 days Planting Trees Could Cut Emissions As Much As Quitting Oil
  • 4 days VW Fails To Secure Critical Commodity For EVs
  • 4 days Enbridge Pipeline Expansion Finally Approved
  • 4 days Iraqi Forces Seize Control Of North Oil Co Fields In Kirkuk
  • 4 days OPEC Oil Deal Compliance Falls To 86%
  • 4 days U.S. Oil Production To Increase in November As Rig Count Falls
  • 4 days Gazprom Neft Unhappy With OPEC-Russia Production Cut Deal
  • 4 days Disputed Venezuelan Vote Could Lead To More Sanctions, Clashes
  • 5 days EU Urges U.S. Congress To Protect Iran Nuclear Deal
  • 5 days Oil Rig Explosion In Louisiana Leaves 7 Injured, 1 Still Missing
  • 5 days Aramco Says No Plans To Shelve IPO
Brian Westenhaus

Brian Westenhaus

Brian is the editor of the popular energy technology site New Energy and Fuel. The site’s mission is to inform, stimulate, amuse and abuse the…

More Info

Improving Solar Cell Technology

Improving Solar Cell Technology

A team of researchers from North Carolina State University and the U.K. has found that the low rate of energy conversion in all-polymer photovoltaic solar-cell technology is caused by the structure of the solar cells themselves.

Dr. Harald Ade, professor of physics at NCSU explains, “Solar cells have to be simultaneously thick enough to absorb photons from the sun, but have structures small enough for that captured energy — known as an exciton — to be able to travel to the site of charge separation and conversion into the electricity that we use. The solar cells capture the photons, but the exciton has too far to travel, the interface between the two different plastics used is too rough for efficient charge separation, and its energy gets lost.”

Ade says, in order for the solar cell to be most efficient, the layer that absorbs the photons should be around 150-200 nanometers thick (a nanometer is thousands of times smaller than the width of a human hair). The resulting exciton, however, should only have to travel a distance of 10 nanometers before charge separation. The way that polymeric solar cells are currently structured impedes this process.

Polymeric solar cells are made of thin layers of interpenetrating structures from two different conducting plastics and are increasingly popular because they are both potentially cheaper to make than those currently in use and can be “painted” or printed onto a variety of surfaces, including flexible films made from the same material as most soda bottles. However, these solar cells aren’t yet cost-effective to make because they only have a power conversion rate of about three percent, as opposed to the 15 to 20 percent rate in existing solar technology.

Ade explores the current art, “In the all-polymer system investigated, the minimum distance that the exciton must travel is 80 nanometers, the size of the structures formed inside the thin film. Additionally, the way devices are currently manufactured; the interface between the structures isn’t sharply defined, which means that the excitons, or charges, get trapped. New fabrication methods that provide smaller structures and sharper interfaces need to be found.”

The teams paper appear both in Advanced Functional Materials and Nano Letters where the discussion covers the decrease in device efficiency with annealing attributed to decreased interfacial charge separation efficiency, partly due to a decrease in the bulk mobility of the constituent materials upon annealing but also (and significantly) due to the increased interface roughness.  The team used Monte Carlo simulations that demonstrate that increased interface roughness leads to lower charge separation efficiency, and are able to reproduce the experimental current-voltage curves taking both increased interfacial roughness and decreased carrier mobility into account.

The tooling of choice was resonant soft X-ray scattering.  With the new view the team can zero in on the internal issues of the light to electricity conversion.  They’ve learned that construction is going to need to be much more exact at much closer tolerances.  But the pay off could be measured with perhaps a 67to 7-fold increase in output.

Ade and his team plan to look at different types of polymer-based solar cells to see if their low efficiencies are due to this same structural problem. They hope that their data will lead chemists and manufacturers to explore different ways of putting these cells together to increase efficiency.

Ade concludes with, “Now that we know why the existing technology doesn’t work as well as it could, our next steps will be in looking at physical and chemical processes that will correct for those problems. Once we get a baseline of efficiency, we can redirect research and manufacturing efforts.”

The long list of stories about printed, painted and other very low cost and widely variable solar cell installations has many people very excited.  But the practical efficiencies have been stupefying disappointing.  Now that the inner details are better known and a path to better understanding and testing developments, progress could come much faster.

At 20% efficiency and lower costs with some weather robustness photovoltaic solar could become much more widespread. This kind research is what gets the great idea to consumers and is just as important as the initial discoveries.  Great ideas that live only in the lab are fine, but researchers like these at NCSU and the U.K. put the research in the marketplace where people can get the benefits.

By. Brian Westenhaus

Source: The Low Cost Solar Cell Could Get Much Better




Back to homepage


Leave a comment
  • Anonymous on October 17 2010 said:
    No mention of temperature effects either. Nearly all solar efficiency measures are quoted at 25'C. Try finding a solar cell in the mid-day summer sun which will be at 25'C (efficiency decays as temperature increases). Polymer alternative systems must take into account practical issues such as temperature too.

Leave a comment




Oilprice - The No. 1 Source for Oil & Energy News