• 5 minutes Desperate Call or... Erdogan Says Turkey Will Boycott U.S. Electronics
  • 11 minutes Saudi Fund Wants to Take Tesla Private?
  • 17 minutes Starvation, horror in Venezuela
  • 2 hours WTI @ 67.50, charts show $62.50 next
  • 7 hours Newspaper Editorials Across U.S. Rebuke Trump For Attacks On Press
  • 8 hours Mike Shellman's musings on "Cartoon of the Week"
  • 3 hours Permian already crested the productivity bell curve - downward now to Tier 2 geological locations
  • 13 hours Venezuela set to raise gasoline prices to international levels.
  • 3 hours WTI @ 69.33 headed for $70s - $80s end of August
  • 7 hours Batteries Could Be a Small Dotcom-Style Bubble
  • 13 hours Scottish Battery ‘Breakthrough’ Could Charge Electric Cars In Seconds
  • 20 hours Renewable Energy Could "Effectively Be Free" by 2030
  • 19 hours Corporations Are Buying More Renewables Than Ever
  • 8 hours Don't Expect Too Much: Despite a Soaring Economy, America's Annual Pay Increase Isn't Budging
  • 24 hours Again Google: Brazil May Probe Google Over Its Cell Phone System
  • 9 hours France Will Close All Coal Fired Power Stations By 2021
Alt Text

India Surges Ahead In Global Solar Race

India is soaring past the…

Alt Text

Goldman Predicts Major Solar Market Contraction

Solar markets could be headed…

Alt Text

Tesla Closing Down Solar Capacity

Tesla is closing down solar…

Futurity

Futurity

Futurity covers research news from the top universities in the US, UK, Canada and Australia

More Info

Trending Discussions

Ceramic Converter Tackles Solar Cell Problem

Coating a solar cell component in ceramics makes it more heat resistant, which could boost overall efficiency of the cells, say researchers.

The component converts heat from the sun into infrared light, which can be absorbed by solar cells to make electricity—a technology known as thermophotovoltaics.

Unlike earlier prototypes that fell apart before temperatures reached 2,200 degrees Fahrenheit (1,200 degrees Celsius), the new thermal emitter remains stable at temperatures as high as 2,500 F (1,400 C).

cross-section micrograph of the thermal emitter
The cross-section micrograph of the thermal emitter shows the ceramic-coated tungsten retained structural integrity after being subjected to 2,500 F (1,400 C) for one hour. (Credit: Kevin Arpin)

“This is a record performance in terms of thermal stability and a major advance for the field of thermophotovoltaics,” says Shanhui Fan, a professor of electrical engineering at Stanford University.

Fan and his colleagues at the University of Illinois-Urbana Champaign (Illinois) and North Carolina State University collaborated on the project. Their results are published in the journal Nature Communications.

Related article: IKEA Tries to Simplify Solar

WASTED LIGHT

A typical solar cell has a silicon semiconductor that absorbs sunlight directly and converts it into electrical energy. But silicon semiconductors only respond to infrared light.

Higher-energy light waves, including most of the visible light spectrum, are wasted as heat, while lower-energy waves simply pass through the solar panel.

“In theory, conventional single-junction solar cells can only achieve an efficiency level of about 34 percent, but in practice they don’t achieve that,” says study co-author Paul Braun, a professor of materials science at Illinois. “That’s because they throw away the majority of the sun’s energy.”

‘TAILOR THE LIGHT’

Thermophotovoltaic devices are designed to overcome that limitation. Instead of sending sunlight directly to the solar cell, thermophotovoltaic systems have an intermediate component that consists of two parts: an absorber that heats up when exposed to sunlight, and an emitter that converts the heat to infrared light, which is then beamed to the solar cell.

“Essentially, we tailor the light to shorter wavelengths that are ideal for driving a solar cell,” Fan explains. “That raises the theoretical efficiency of the cell to 80 percent, which is quite remarkable.”

So far, thermophotovoltaic systems have only achieved an efficiency level of about 8 percent, Braun notes. The poor performance is largely due to problems with the intermediate component, which is typically made of tungsten—an abundant material also used in conventional light bulbs.

Related article: Suntech Solar Reels as Directors Quit Over Cash Flow

“Our thermal emitters have a complex, three-dimensional nanostructure that has to withstand temperatures above 1,800 F [1000 C] to be practical,” Braun says. “In fact, the hotter the better.”

DRAMATIC RESULTS WITH CERAMICS

In previous experiments, however, the 3-D structure of the emitter was destroyed at temperatures of around 1,800 F (1,000 C). To address the problem, Braun and his Illinois colleagues coated tungsten emitters in a nanolayer of a ceramic material called hafnium dioxide.

The results were dramatic. When subjected to temperatures of 1,800 F (1000 C), the ceramic-coated emitters retained their structural integrity for more than 12 hours. When heated to 2,500 F (1,400 C), the samples remained thermally stable for at least an hour.

The ceramic-coated emitters were sent to Fan and his colleagues at Stanford, who confirmed that devices were still capable of producing infrared light waves that are ideal for running solar cells.

“These results are unprecedented,” says former Illinois graduate student Kevin Arpin, the lead author of the study. “We demonstrated for the first time that ceramics could help advance thermophotovoltaics as well other areas of research, including energy harvesting from waste heat, high-temperature catalysis, and electrochemical energy storage.”

Braun and Fan plan to test other ceramic-type materials and determine if the experimental thermal emitters can deliver infrared light to a working solar cell.

“We’ve demonstrated that the tailoring of optical properties at high temperatures is possible,” Braun says. “Hafnium and tungsten are abundant, low-cost materials, and the process used to make these heat-resistant emitters is well established.

“Hopefully these results will motivate the thermophotovoltaics community to take another look at ceramics and other classes of materials that haven’t been considered.”

Stanford’s Global Climate and Energy Project and the Department of Energy’s Light-Material Interactions in Energy Conversion Center supported the work, along with the National Science Foundation and the Research Triangle Solar Fuels Institute.

By. Mark Schwartz




Back to homepage

Trending Discussions


Leave a comment

Leave a comment




Oilprice - The No. 1 Source for Oil & Energy News