• 1 hour Saudi Aramco CEO Affirms IPO On Track For H2 2018
  • 3 hours Canadia Ltd. Returns To Sudan For First Time Since Oil Price Crash
  • 4 hours Syrian Rebel Group Takes Over Oil Field From IS
  • 3 days PDVSA Booted From Caribbean Terminal Over Unpaid Bills
  • 3 days Russia Warns Ukraine Against Recovering Oil Off The Coast Of Crimea
  • 3 days Syrian Rebels Relinquish Control Of Major Gas Field
  • 3 days Schlumberger Warns Of Moderating Investment In North America
  • 3 days Oil Prices Set For Weekly Loss As Profit Taking Trumps Mideast Tensions
  • 3 days Energy Regulators Look To Guard Grid From Cyberattacks
  • 3 days Mexico Says OPEC Has Not Approached It For Deal Extension
  • 3 days New Video Game Targets Oil Infrastructure
  • 3 days Shell Restarts Bonny Light Exports
  • 3 days Russia’s Rosneft To Take Majority In Kurdish Oil Pipeline
  • 3 days Iraq Struggles To Replace Damaged Kirkuk Equipment As Output Falls
  • 4 days British Utility Companies Brace For Major Reforms
  • 4 days Montenegro A ‘Sweet Spot’ Of Untapped Oil, Gas In The Adriatic
  • 4 days Rosneft CEO: Rising U.S. Shale A Downside Risk To Oil Prices
  • 4 days Brazil Could Invite More Bids For Unsold Pre-Salt Oil Blocks
  • 4 days OPEC/Non-OPEC Seek Consensus On Deal Before Nov Summit
  • 4 days London Stock Exchange Boss Defends Push To Win Aramco IPO
  • 4 days Rosneft Signs $400M Deal With Kurdistan
  • 4 days Kinder Morgan Warns About Trans Mountain Delays
  • 4 days India, China, U.S., Complain Of Venezuelan Crude Oil Quality Issues
  • 5 days Kurdish Kirkuk-Ceyhan Crude Oil Flows Plunge To 225,000 Bpd
  • 5 days Russia, Saudis Team Up To Boost Fracking Tech
  • 5 days Conflicting News Spurs Doubt On Aramco IPO
  • 5 days Exxon Starts Production At New Refinery In Texas
  • 5 days Iraq Asks BP To Redevelop Kirkuk Oil Fields
  • 6 days Oil Prices Rise After U.S. API Reports Strong Crude Inventory Draw
  • 6 days Oil Gains Spur Growth In Canada’s Oil Cities
  • 6 days China To Take 5% Of Rosneft’s Output In New Deal
  • 6 days UAE Oil Giant Seeks Partnership For Possible IPO
  • 6 days Planting Trees Could Cut Emissions As Much As Quitting Oil
  • 6 days VW Fails To Secure Critical Commodity For EVs
  • 6 days Enbridge Pipeline Expansion Finally Approved
  • 6 days Iraqi Forces Seize Control Of North Oil Co Fields In Kirkuk
  • 6 days OPEC Oil Deal Compliance Falls To 86%
  • 7 days U.S. Oil Production To Increase in November As Rig Count Falls
  • 7 days Gazprom Neft Unhappy With OPEC-Russia Production Cut Deal
  • 7 days Disputed Venezuelan Vote Could Lead To More Sanctions, Clashes
Alt Text

Can India Overtake China In The EV Revolution?

India wants to drastically increase…

Alt Text

Richard Branson To Invest In Elon Musk’s Hyperloop One

Britain’s Virgin Group boss has…

EcoSeed

EcoSeed

Ecoseed’s mission is to provide global, complete, innovative, and up to date news, information, resources, and opportunities, catalyst to incorporate environmental awareness and responsibility into…

More Info

Looking at the Technologies being Developed to Extract Energy from the Oceans

Looking at the Technologies being Developed to Extract Energy from the Oceans

Renewable energy is often dominated in the discussions by solar, wind and biomass. While they already have a wide fan base, yet another promising emerging technology is marine power.

Marine power is a renewable source classified as “third-generation,” or those that need further research and development efforts in order for them to make large contributions to the global energy mix.

According to analyst Global Information, Inc., the global marine energy sector’s installed capacity in 2009 was 270 megawatts. This figure is expected to balloon to over 46,000 MW by 2020.

There are five technologies being developed which aim to extract energy from the oceans. These are tidal and wave power, and marine current, temperature gradient and salinity gradient technologies. Tidal power and wave power are the most active, having the greater extent of developments.

Tidal power is the potential energy associated with tides that can be harnessed by building a barrage or other forms of construction across an estuary or bay. The first tidal barrage power plant to be built is located in La Rance, Bitanny, France. It has been operating since 1966, producing 240 MW of power.

The Sihwa Lake Tidal Power Station in South Korea is the world’s largest tidal power installation, with a capacity of 254 MW. It was opened in 2011.

Wave power refers to technology that takes advantage of the ocean waves caused primarily by the interaction of winds with the ocean surface. A number of technologies have been developed to harness the potential of this energy. The most prominent among them are the Pelamis, the PowerBuoy, the Aqua Buoy, the Wave Dragon and the Oyster. All of them are designed to convert splashing waves into energy.

Other technologies

Other marine power innovations that can be used for maximizing energy from the oceans – when given more attention – are ocean thermal energy conversion (temperature gradient technology), osmotic power (salinity gradient technology) and marine currents.

Ocean thermal energy conversion uses the temperature difference between the cooler deep and warmer shallow surfaces of ocean waters to run a heat engine and produce electricity. However, the temperature differential is small. This affects the economic feasibility of ocean thermal energy conversion for electricity generation. This is the main challenge that has to be overcome to optimize this technology.

Osmotic power is the energy that comes from the difference in the salt concentration between seawater and river water, and this could be captured through osmosis. This technology remains young, with the first osmotic power plant in the world in Norway only capable of producing an output of 4 kilowatts.

Marine current is potential energy associated with tidal currents and can be harnessed with the use of modular systems. This is still untapped as broad developments are needed to gauge this technology.

Generally, none of these technologies are widely deployed so far, but significant potential exists, according to the International Energy Agency. Significantly, these technologies could start to play a sizable role in the electricity mix by around 2030, the same agency predicts.

Countries take on marine power

Sitting on areas ideal for ocean power harvesting, Britain and Australia, among others, are well-positioned to take advantage of these water power technologies.

Britain has released a study that trains the spotlight on marine power’s potential significant contribution to the state’s energy mix. Its marine energy report under the Technology Innovation Needs Assessments suggests that the country has a large natural resource for marine power, particularly from waves and tidal streams.

Effectively exploiting marine energy could make Britain the undisputed global market leader, delivering more than 75 terawatts per year – a capacity that is over 10 percent of the state’s projected electricity needs by 2050. Significantly, this could also help the state achieve its emissions reduction and renewable energy deployment targets.

Britain’s recent step toward boosting this budding technology is the opening of two marine energy parks this year. The first was in the South West last January and the other was just this end of July in Pentland Firth and Orkney Waters. They will also serve as a technology hub for tidal and wave prototypes of developers from across the world.

Unlike Britain, which has already done a number of activities on marine technology, Australia has just begun.

Ocean energy from waves, currents and tides offer as much as 10 percent of Australia’s energy mix by 2050, a report from the Commonwealth Scientific and Industrial Research Organization found. This amount of energy is enough to power a city as big as Melbourne.

Areas in the southern shore have the greatest wave reserves in the country brought by strong southern ocean winds that consistently generate large waves, driving northwards to Australia’s southern coastline.

Meanwhile, tidal power could be used to provide energy for niche areas like northeast Tasmania and the Kimberley region in west Australia. While Australia sees promise from ocean wave power, further studies and innovations have to be done to optimize this resource for it to play a big part in the country’s energy future.

As its first move to explore marine technologies options, the Australian government has been encouraging research and development, which in turn would be the basis for scaling up the country’s marine energy sector.

By. Catherine Dominguez




Back to homepage


Leave a comment
  • Neil Nicholas on October 03 2012 said:
    A very interesting article. It must also be noted that much more research needs to done on the Rise and Fall of the tide rater than its lateral movement. This is an easily predictable, constant form of energy.

Leave a comment




Oilprice - The No. 1 Source for Oil & Energy News