• 5 minutes Mike Shellman's musings on "Cartoon of the Week"
  • 11 minutes Permian already crested the productivity bell curve - downward now to Tier 2 geological locations
  • 17 minutes WTI @ 67.50, charts show $62.50 next
  • 1 day The Discount Airline Model Is Coming for Europe’s Railways
  • 12 hours Desperate Call or... Erdogan Says Turkey Will Boycott U.S. Electronics
  • 7 hours Renewable Energy Could "Effectively Be Free" by 2030
  • 21 hours Pakistan: "Heart" Of Terrorism and Global Threat
  • 35 mins Starvation, horror in Venezuela
  • 8 hours Saudi Fund Wants to Take Tesla Private?
  • 1 day Venezuela set to raise gasoline prices to international levels.
  • 20 hours Are Trump's steel tariffs working? Seems they are!
  • 2 days WTI @ 69.33 headed for $70s - $80s end of August
  • 2 days Scottish Battery ‘Breakthrough’ Could Charge Electric Cars In Seconds
  • 1 hour Why hydrogen economics does not work
  • 1 day Corporations Are Buying More Renewables Than Ever
  • 27 mins China goes against US natural gas
Alt Text

Is This The Newest Nuclear Player In The Middle East?

Oman’s sovereign wealth fund just…

Alt Text

Researchers Announce Nuclear Fusion Breakthrough

A new breakthrough from an…

Alt Text

New Tech Is Transforming Japan’s Energy Sector

The tech that built bitcoin…

Daily Energy Report

Daily Energy Report

The Daily Energy Report was created to give viewers the opportunity to get the daily scoop on what’s going on in the world of energy

More Info

Trending Discussions

Scientists must Study the Nuclear Weak Force to Better Understand LENR

In the early part of the 20th Century physicists theorized that a mysterious force held the nucleus of an atom together.  When it was demonstrated that this force could be tapped, releasing tremendous amounts of energy, a wave of excitement swept the scientific world.  It took only a few short years before atomic energy theories were experimentally validated in the first nuclear weapon detonations.  Hiroshima and Nagasaki followed.  Most of us alive today were born under the mushroom cloud that has loomed over humanity ever since.  Accessing the power of the strong nuclear force has been a mixed blessing:  it has brought the possibility of energy beyond our wildest dreams but with nightmarish consequences that were literally unimaginable a generation ago.

That physicists would become enamored of the strong nuclear force is understandable:  the energy locked in the nucleus of the atom is potent, it is real, and the challenge of harnessing it for useful purposes has become the “holy grail” of scientific endeavor.

But could another, more subtle, “fundamental force” hold the key to our energy future?

The Fundamental Forces of Nature and the Weak Force

Of the four fundamental forces (gravity, electromagnetism, strong nuclear force and weak nuclear force), the “weak force” is the most enigmatic. Whereas the other three forces act through attraction/repulsion mechanisms, the weak force is responsible for transmutations – changing one element into another – and incremental shifts between mass and energy at the nuclear level.

Simply put, the weak force is the way Nature seeks stability.  Stability at the nuclear level permits elements to form, which make up all of the familiar stuff of our world.  Without the stabilizing action of the weak force, the material world, including our physical bodies, would not exist.  The weak force is responsible for the radioactive decay of heavy (radioactive) elements into their lighter, more stable forms.  But the weak force is also at work in the formation of the lightest of elements, hydrogen and helium, and all the elements in between.

A good way to understand the weak force is in comparison with the actions of the other forces at work in the center of the Sun.  The Sun, although extraordinarily hot (10 million degrees), is cool enough for the constituent parts of matter, quarks, to clump together to form protons.  A proton is necessary to form an element, which occurs when it attracts an electron – the simplest case being hydrogen, which is composed of a single proton and a single electron.  By the force of gravity, protons are pulled together until two of them touch – but because of the electrostatic repulsion of their two positive charges, their total energy becomes unstable and one of the protons undergoes a form of radioactive decay, turning it into a neutron and emitting a positron (the antiparticle of an electron) and a neutrino.  This action forms a deuteron (one proton and one neutron), which is more stable than the two repelling protons.  This transmutation of proton into neutron plus beta particles is mediated by the weak force.

Related article: Nuclear Fusion – Possible at Last?

A neutron is slightly heavier, and therefore less stable, than a proton.  So the normal action of the weak force causes a neutron to decay into a proton, an electron and a neutrino.  At any rate, at the center of the Sun, once a deuteron is formed, it will fuse with another free proton to form helium-3 (one neutron and two protons), releasing tremendous amounts of energy.  These helium-3 atoms then fuse to form helium-4 and releasing two more protons and more energy.  The release of energy in these fusion reactions from the strong force is what powers the Sun.  But the entire process is set in motion by the weak force.

Enter “Cold Fusion”

When in 1989 Pons and Fleishman stunned the world by reporting nuclear reaction signatures at room temperatures, physicists were understandably baffled and skeptical.  Given that virtually all nuclear physicists at the time were trained in the powerful energies of the strong force, table top fusion made no sense.  The fact that the phenomenon was dubbed “cold fusion” was unfortunate and likely contributed to almost universal rejection by the scientific community.  Standard theoretical models were not able to explain how cold fusion might even be possible and unless it could be understood it was pointless and a waste of time.  A comment attributed to Wolfgang Pauli describes the reaction of most physicists at the time: “it’s not right; it’s not even wrong”.  Without a coherent theory to explain it, it wasn’t even science at all.

This all changed in 2006 with the publication of a paper in the peer-reviewed The European Physical Journal by Allan Widom and Louis Larsen titled “Ultra low momentum neutron catalyzed nuclear reactions on metallic hydride surfaces”.

In this paper for the first time a theoretical basis was put forth that explained many of the anomalous results being reported by experimentalists in the new field of Low Energy Nuclear Reactions (LENR) – and the common explanatory action was the weak force.

As explained by Dennis Bushnell, Chief Scientist at NASA Langley Research Center in his article “Low Energy Nuclear Reactions, the Realism and the Outlook”:

“The Strong Force Particle physicists have evidently been correct all along. “Cold Fusion” is not possible. However, via collective effects/ condensed matter quantum nuclear physics, LENR is allowable without any “miracles.” The theory states that once some energy is added to surfaces loaded with hydrogen/protons, if the surface morphology enables high localized voltage gradients, then heavy electrons leading to ultra low energy neutrons will form– neutrons that never leave the surface. The neutrons set up isotope cascades which result in beta decay, heat and transmutations with the heavy electrons converting the beta decay gamma into heat.”

Brief Description of Widom-Larsen Theory

Not everyone agrees that the Widom-Larsen Theory (“WLT”) accurately explains all, or even most, of the observed phenomenon in LENR experiments.  But it is worth a brief look at what WLT proposes.

In the first step of WLT, a proton captures a charged lepton (an electron) and produces a neutron and a neutrino.  No Coulomb barrier inhibits the reaction.  In fact, a strong Coulomb attraction that can exist between an electron and a nucleus helps the nuclear transmutation proceed.

This process is well known to occur with muons, a type of lepton that can be thought of as very heavy electrons – the increased mass is what pulls the lepton into the nucleus.  For this to occur with electrons in a condensed matter hydrogen system, local electromagnetic field fluctuations are induced to increase the mass of the electron.  Thus, a “mass modified” hydrogen atom can decay into a neutron and a neutrino.  These neutrons are born with ultra low momentum and, because of their long wavelength, get caught in the cavity formed by oscillating protons in the metal lattice.

Related article: NASA Funds Research into Fusion Powered Rocket for Deep Space Travel

These ultra low momentum neutrons, which do not escape the immediate vicinity of the cavity and are therefore difficult to detect, yield interesting reaction sequences.  For example, helium-3 and helium-4 are produced often yielding large quantities of heat.  WLT refers to these as neutron catalyzed nuclear reactions.  As Dennis Bushnell explains:  “the neutrons set up isotope cascades which result in beta decay, heat and transmutations.”  Nuclear fusion does not occur and therefore there is no Coulomb barrier obstruction to the resulting neutron catalyzed nuclear reaction.

Brief Description of Brillouin Theory

Robert Godes of Brillouin Energy Corp., claims that WLT explains some, but not all, of the observed LENR phenomena.  As Godes understands the process, metal hydrides stimulated with precise, narrow, high voltage, bipolar pulse frequencies (“Q-pulse”) cause protons or deuterons to undergo electron capture.  The metal lattice stimulation by the Q-pulse reverses the natural decay of neutrons to protons, plus beta particles, catalyzing an electron capture in a first endothermic step.  When the initial proton (or deuteron) is confined in the metal lattice and the total Hamiltonian (total energy of the system) reaches a certain threshold level by means of the Q-pulse stimulation, an ultra cold neutron is formed.  This ultra cold neutron occupies a position in the lattice where dissolved hydrogen tunnels and undergoes transmutation, forming a cascade of transmutations – deuteron, triton, quadrium – by capturing the cold neutron and releasing binding energy.  Such a cascading reaction will result in a beta decay transmutation to helium-4, plus heat.

The Q pulse causes a dramatic increase of the phonon activity, driving the system far out of equilibrium.  When this energy reaches a threshold level, neutron production via electron capture becomes a natural path to bring the system back to stability.

Theory and Experiment

Other well-known LENR theorists have implicated the weak force, including Peter Hagelstein, Tadahiko Mizuno, Yasuhiro Iwamura and Mitchell Swartz.  The project now, as with all scientific endeavor, is to match experimental evidence to theory.  The hope is that the electron capture/weak force theories will help guide new, even more successful experiments.  This process will also allow theorists to add refinement and new thinking to their models.  I am reminded of the two “laws” of physicists proposed by an early weak force pioneer:

1. Without experimentalists, theorists tend to drift.
2. Without theorists, experimentalists tend to falter.
(T.D. Lee, as quoted in “The Weak Force: From Fermi to Feynman” by A. Lesov).

Experimentalists have been reporting anomalous heat from metal hydrides since before Pons and Fleischmann.  But without a cogent theory, they have had to rely on ad hoc, trial and error methods.  Given this state of affairs, the progress made in the LENR field in the last twenty years is remarkable.  Perhaps we are now at the beginning of a new era in which theoretical models will guide a rapid transformation of the science.


Scientists have focused on the strong nuclear force due to the immense power that can be released from breaking the nuclear bond.  Less attention has been paid to the weak force, which causes transmutations and the release of energy in more subtle ways.  Recent theories that explain many of the phenomena observed in low energy nuclear reactions (LENR) implicate the weak force.  We are now at the stage where theory and experiment begin to complement each other to allow for the rapid transformation of the new science of LENR.

By. David Niebauer

Back to homepage

Trending Discussions

Leave a comment
  • Steven B. Krivit on May 07 2013 said:
    Does the author have a commercial interest in Brillouin Energy Corp.?
  • Liberty Newspost on May 08 2013 said:
    Excellent article. Clearly Steven Krivit has commercial interest in who beats who to the punch with a comment like that for this type of article.
  • Roger Bird on May 08 2013 said:
    It is interesting that some people are saying that LENR is impossible, and other people are just going about their business developing it and building theories about it. Sort of like the Wright Bros. and those saying that heavier-than-air flight is impossible, while the Wright Bros. were flying around Dayton, Ohio.

    Dear Human Race, a new economic and energy order is coming. Be prepared.
  • Frank Znidarsic on May 08 2013 said:
    I agree that the weak force is at work in cold fusion. What many have missed is that the magnetic components of the force fields are not conserved. The nuclear magnetic nuclear spin orbit force is not conserved and can be amplified within solids.

    I wrote a book on the subject, "Energy, Cold Fusion, and Antigravity" is available in Kindle and Paper Back formats at Amazon.com.


    Frank Znidarsic
  • Brad Arnold on May 09 2013 said:
    What a beautifully enlightening article. It is hard to believe that LENR has been repeatedly dismissed because the exothermic reaction didn't emit high energy neutrons. It is the weak force dummies, not the strong force (nuclear fusion/fission) that you are so obsessed with. Frankly, nothing short of an LENR commercial product will convince some.

    “Louis Pasteur’s theory of germs is ridiculous fiction.” - Pierre Pachet, Professor of Physiology at Toulouse, 1872
  • Jim Anderson on May 09 2013 said:
    I enjoyed your excellent article. I think your description of how the sun works is misleading. Gravity creates a high density high temperature situation. The collision of 2 protons has to have enough energy to overcome their electrostatic repulsion. When the protrons collide they pass through a barrier and when they get close enough together they become attractive to each other. The weak force is a short range force and becomes operative as a result of the collision. A protron consists of 2 up quarks and one down quark and a neutron consists of 2 down quarks and 1 up quark. So the weak force uses the energy of the collision to turn an up quark into a down quark. One of the protrons has become a neutron and therefore a deutron is formed.
  • hunfgerh on May 10 2013 said:
    Take a hydrogen-atom, it consist of a proton (positive charge) and an electron (negative charge).
    The electron moves spherically symmetric around the proton (core).
    Between a positive charge and a negative charge is an attraction; usually, as result both charges must combine to neutral particle.
    But in a hydrogen atom it does not happen. The only explanation is, that the attractive force
    has an opponent (repulsive force) which prevents the combination.
    In our example (hydrogen-atom) this means, both attractive force and repulsive force are in balance.

    To produce neutral particles (neutrons) from hydrogen we must cancel this balance. For that, you need an additive force on the electron. The additve force must work only via core. This work can be done by the repulsive force of electrons. In practice this means we have to surround hydrogen-atoms symmetrical by clouds of electrons. In condensed matter we can reach this with materials
    who can both

    -store hydrogen
    -carry high current density

    This means we need hydridic-superconducter.

    A group around me gave the evidence for such superconductor:


    Inside this material you can produce

    -Ultra low momentum neutrons from hydrogen-atoms via e-capture

    -Deuterium via neutron capture by hydrogen atoms (cold Fusion = CF)

    For cold fusion via these steps three forces

    - Electromagnetic force (Electron repulsion)
    - Weak force (e-capture)
    - Strong force (n-capture = CF)

    are involved.
  • Harvey Hamel on May 10 2013 said:
    I've been following LENR and related development work for the past two years now with very little technical understaning of the process, but very high hopes of its obvious benefits to humanity. Recent news is getting me pretty jazzed and I'll not give up on sending many prayers for a speedy breakthrough. I also send my blessings to all who are not giving up on pursuing this dream.
  • Alan DeAngelis on May 10 2013 said:
    I think an Oppenhiemer-Phillips process or stripping reaction is a much better way to explain the transmutations taking place in deuterium palladium systems than Widom-Larsen Theory. A stripping reaction would be exothermic. For example, the transmutation of palladium-108 to palladium-109 and a proton (p).

    d + Pd(108) > p + Pd(109) 3.9 MeV

    This goes on to beta decay to Silver-109

    Pd(109) > Ag(109) + e
  • Carol on May 12 2013 said:
    I think the Oppenheimer-Phillips process is not the explanation for the subject we discuss here.

    For the bombardment of palladium the d-particle must first accelerated to high energy particles.

    For that you need an accelerator (cyclotron).

    Where is the cyclotron in LERN/cold fusion reactions?
  • Alan DeAngelis on May 14 2013 said:
    Martin Fleischmann mentioned to Steve Krivit that he thought neutron transfer reactions were taking place in the deuterium saturated palladium lattice. He was referring to an Oppenheimer-Phillips Process (not WLT) that other researcher were considering in the early 1990’s. “Deuteron disintegration in condensed media” Journal of Fusion Energy, December 1990, Volume 9, Issue 4, pp 429-435 by M. Ragheb and G.H. Miley. The lattice would enable the weakly bound neutron of the deuteron (2.2 MeV) to polarize and start reacting with the large (large thermal neutron cross sections) nuclei of palladium.

    On the other hand, it requires 3.01 MeV to make two neutrons from a deuteron and an electron!
    Energy equivalences of rest masses of:
    Deuteron: 1875.612793 MeV
    Electron: 0.5109906 MeV
    Neutron: 939.56563 MeV
    D + e > 2 n would require 3.01 MeV !! [not 0.39 MeV ( the mistake that Peter Ekström picked out in Larsen’s table)].
    And this energy is somehow recouped from the KeV gamma rays of beta decay (with 100% efficiency) in WLT?
  • Joannes Van den Bogaert on May 15 2013 said:
    A theory of "cold fusion (LANR) can be found in Belgian patent 1002780 tranzslated in English on e-Cat Site in the article "Belgian LANR patents". The theory is based on "electrostatic wetting" formerly analogously being used in electrophotography. Worthwhile to consider are BE1002781 and BE1003296 wherein nuclear fusion is based on Coulomb explosion.
  • AlainCo on May 20 2013 said:
    E-cat independent report published on arxiv

    more formal than the one of defkalion by nelson, by SRI of Brillouin...

    time to do business !

    science will not accept LENR until they get funding.

    LENR-invest/lenr-cities and defkalion seems to work on that problem.
  • maryyugo on June 07 2013 said:
    "Does the author have a commercial interest in Brillouin Energy Corp.? "
    IIRC, I read somewhere that he is their attorney.
  • Alan DeAngelis on June 23 2013 said:
    The infrared stretching of the palladium-deuterium bond is the cyclotron.
  • Schaeffer on July 17 2013 said:
    I did not study the weak interaction but I know that the strong interaction is only hypothetical : its fundamental laws are unknown. Therefore it is impossible to calculate from the strong force the binding energy of even the simplest atomic nucleus, the deuteron 2H.

    On the contrary, rejecting the mainstream hypotheses, using Coulomb's laws applied to the electromagnetic properties of the proton and the neutron, known qualitatively by the Greeks two millenary ago, one obtains easily the binding energy of the deuteron with a precision better than 5%. For the alpha particle 4He, more complicated, the precision is presently around 30%.

    Here is one of my papers in open access:
  • schaeffer on July 21 2013 said:
    What are the fundamental laws of the weak force?

Leave a comment

Oilprice - The No. 1 Source for Oil & Energy News