• 1 hour Gunmen Kidnap Nigerian Oil Workers In Oil-Rich Delta Area
  • 3 hours Libya’s NOC Restarts Oil Fields
  • 5 hours US Orion To Develop Gas Field In Iraq
  • 3 days U.S. On Track To Unseat Saudi Arabia As No.2 Oil Producer In the World
  • 3 days Senior Interior Dept. Official Says Florida Still On Trump’s Draft Drilling Plan
  • 3 days Schlumberger Optimistic In 2018 For Oilfield Services Businesses
  • 3 days Only 1/3 Of Oil Patch Jobs To Return To Canada After Downturn Ends
  • 3 days Statoil, YPF Finalize Joint Vaca Muerta Development Deal
  • 3 days TransCanada Boasts Long-Term Commitments For Keystone XL
  • 3 days Nigeria Files Suit Against JP Morgan Over Oil Field Sale
  • 3 days Chinese Oil Ships Found Violating UN Sanctions On North Korea
  • 4 days Oil Slick From Iranian Tanker Explosion Is Now The Size Of Paris
  • 4 days Nigeria Approves Petroleum Industry Bill After 17 Long Years
  • 4 days Venezuelan Output Drops To 28-Year Low In 2017
  • 4 days OPEC Revises Up Non-OPEC Production Estimates For 2018
  • 4 days Iraq Ready To Sign Deal With BP For Kirkuk Fields
  • 4 days Kinder Morgan Delays Trans Mountain Launch Again
  • 4 days Shell Inks Another Solar Deal
  • 5 days API Reports Seventh Large Crude Draw In Seven Weeks
  • 5 days Maduro’s Advisors Recommend Selling Petro At Steep 60% Discount
  • 5 days EIA: Shale Oil Output To Rise By 1.8 Million Bpd Through Q1 2019
  • 5 days IEA: Don’t Expect Much Oil From Arctic National Wildlife Refuge Before 2030
  • 5 days Minister Says Norway Must Prepare For Arctic Oil Race With Russia
  • 5 days Eight Years Late—UK Hinkley Point C To Be In Service By 2025
  • 5 days Sunk Iranian Oil Tanker Leave Behind Two Slicks
  • 5 days Saudi Arabia Shuns UBS, BofA As Aramco IPO Coordinators
  • 5 days WCS-WTI Spread Narrows As Exports-By-Rail Pick Up
  • 6 days Norway Grants Record 75 New Offshore Exploration Leases
  • 6 days China’s Growing Appetite For Renewables
  • 6 days Chevron To Resume Drilling In Kurdistan
  • 6 days India Boosts Oil, Gas Resource Estimate Ahead Of Bidding Round
  • 6 days India’s Reliance Boosts Export Refinery Capacity By 30%
  • 6 days Nigeria Among Worst Performers In Electricity Supply
  • 6 days ELN Attacks Another Colombian Pipeline As Ceasefire Ceases
  • 7 days Shell Buys 43.8% Stake In Silicon Ranch Solar
  • 7 days Saudis To Award Nuclear Power Contracts In December
  • 7 days Shell Approves Its First North Sea Oil Project In Six Years
  • 7 days China Unlikely To Maintain Record Oil Product Exports
  • 7 days Australia Solar Power Additions Hit Record In 2017
  • 7 days Morocco Prepares $4.6B Gas Project Tender
Alt Text

Nuclear Power's Resurgence In The Middle East

While nuclear power loses popularity…

Alt Text

Are Higher Uranium Prices Around The Corner?

The world’s largest uranium producer…

Alt Text

Is This The End Of Nuclear Power In The UK?

The UK has been planning…

Professor Chris Rhodes

Professor Chris Rhodes

Professor Chris Rhodes is a writer and researcher. He studied chemistry at Sussex University, earning both a B.Sc and a Doctoral degree (D.Phil.); rising to…

More Info

Hopes Build for Thorium Nuclear Energy

Hopes Build for Thorium Nuclear Energy

There is much written to the effect that thorium might prove a more viable nuclear fuel, and an energy industry based upon it, than the current uranium-based process which serves to provide both energy and weapons - including "depleted uranium" for armaments and missiles. There are different ways in which energy might be extracted from thorium, one of which is the accelerator-driven system (ADS). Such accelerators need massive amounts of electricity to run them, as all particle accelerators do, but these are required to produce a beam of protons of such intensity that until 10 years ago the prevailing technology meant that it could not have been done. As noted below, an alternative means to use thorium as a fuel is in a liquid fluoride reactor (LFR), also termed a molten salt reactor, which avoids the use of solid oxide nuclear fuels. Indeed, China has made the decision to develop an LFR-based thorium-power programme, to be active by 2020.

Rather like nuclear fusion, the working ADS technology is some way off, and may never happen, although Professor Egil Lillestol of Bergen University in Norway is pushing that the world should use thorium in such ADS reactors. Using thorium as a nuclear fuel is a laudable idea, as is amply demonstrated in the blog "Energy from Thorium" (http://thoriumenergy.blogspot.com/). However, the European Union has pulled the plug on funding for the thorium ADS programme, which was directed by Professor Carlo Rubbia, the Nobel Prize winner, who has now abandoned his efforts to press forward the programme, and instead concentrated on solar energy, which was another of his activities. Rubbia had appointed Lillestol as leader of the CERN physics division over two decades ago, in 1989, who believes that the cause is not lost.

Thorium has many advantages, not the least being its greater abundance than uranium. It is often quoted that there is three times as much thorium as there is uranium. Uranium is around 2 - 3 parts per million in abundance in most soils, and this proportion rises especially where phosphate rocks are present, to anywhere between 50 and 1000 ppm. This is still only in the range 0.005% - 0.1% and so even the best soils are not obvious places to look for uranium. However, somewhere around 6 ppm as an average for thorium in the Earth's crust is a reasonable estimate. There are thorium mineral deposits that contain up to 12% of the element, located at the following tonnages in Turkey (380,000), Australia (300,000), India (290,000), Canada and the US combined (260,000)... and Norway (170,000), perhaps explaining part of Lillestol's enthusiasm for thorium based nuclear power. Indeed, Norway is very well endowed with natural fuel resources, including gas, oil, coal, and it would appear, thorium.

An alternative technology to the ADS is the "Liquid Fluoride Reactor" (LFR), which is described and discussed in considerable detail on the http://thoriumenergy.blogspot.com/ blog, and reading this has convinced me that the LFR may provide the best means to achieve our future nuclear energy programme. Thorium exists naturally as thorium-232, which is not of itself a viable nuclear fuel. However, by absorption of relatively low energy "slow" neutrons, it is converted to protactinium 233, which must be removed from the reactor (otherwise it absorbs another neutron and becomes protactinium 234) and allowed to decay over about 28 days to uranium 233, which is fissile, and can be returned to the reactor as a fuel, and to breed more uranium 233 from thorium. The "breeding" cycle can be kicked-off using plutonium say, to provide the initial supply of neutrons, and indeed the LFRwould be a useful way of disposing of weapons grade plutonium and uranium from the world's stockpiles while converting it into useful energy.

The LFR makes in-situ reprocessing possible, much more easily than is the case for solid-fuel based reactors. I believe there have been two working LFR's to date, and if implemented, the technology would avoid using uranium-plutonium fast breeder reactors, which need high energy "fast" neutrons to convert uranium 238 which is not fissile to plutonium 239 which is. The LFR is inherently safer and does not require liquid sodium as a coolant, while it also avoids the risk of plutonium getting into the hands of terrorists. It is worth noting that while uranium 235 and plutonium 239 could be shielded to avoid detection as a "bomb in a suitcase", uranium 233 could not, because it is always contaminated with uranium 232, which is a strong gamma-ray emitter, and is far less easily concealed.

It has been claimed that thorium produces "250 times more energy per unit of weight" than uranium. Now this isn't simply a "logs versus coal on the fire" kind of argument, but presumably refers to the fact that while essentially all the thorium can be used as a fuel, the uranium must be enriched in uranium 235, the rest being "thrown away" and hence wasted as "depleted" uranium 238 (unless it is bred into plutonium). If both the thorium and uranium were used to breed uranium 233 or plutonium 239, then presumably their relative "heat output" weight for weight should be about the same as final fission fuels? If this is wrong, will someone please explain this to me as I should be interested to know?

However, allowing that the LFR in-situ reprocessing is a far easier and less dangerous procedure, the simple sums are that contained in 248 million tonnes of natural uranium, available as a reserve, are 1.79 million tonnes of uranium 235 + 246.2 million tonnes of uranium 238. Hence by enrichment 35 million tonnes (Mt) of uranium containing 3.2% uranium 235 (from the original 0.71%) are obtained. This "enriched fraction" would contain 1.12 Mt of (235) + 33.88 Mt of (238), leaving in the other "depleted" fraction 248 - 35 Mt = 213 Mt of the original 248 Mt, and containing 0.67 Mt (235) + 212.3 Mt (238). Thus we have accessed 1.79 - 0.67 = 1.12 Mt of (235) = 1.12/224 = 4.52 x 10*-3 or 0.452% of the original total uranium. Thus on a relative basis thorium (assuming 100% of it can be used) is 100/0.452 = 221 times as good weight for weight, which is close to the figure claimed, and a small variation in enrichment to a slightly higher level as is sometimes done probably would get us to an advantage factor of 250!

Plutonium is a by-product of normal operation of a uranium-fuelled fission reactor. 95 to 97% of the fuel in the reactor is uranium 238. Some of this uranium is converted to plutonium 239 and plutonium 241 - usually about 1000 kg forms after a year of operation. At the end of the cycle (a year to 2 years, typically), very little uranium 235 is left and about 30% of the power produced by the reactor actually comes from plutonium. Hence a degree of "breeding" happens intrinsically and so the practical advantage of uranium raises its head from 1/250 (accepting that figure) to 1/192, which still weighs enormously in favour of thorium!

As a rough estimate, 1.4 million tonnes of thorium (about one third the world uranium claimed, which is enough to last another 50 years as a fission fuel) would keep us going for about 200/3 x 50 = 3,333 years. Even if we were to produce all the world's electricity from nuclear that is currently produced using fossil fuels (which would certainly cut our CO2 emissions), we would be O.K. for 3,333/4 = 833 years. More thorium would doubtless be found if it were looked for, and so the basic raw material is not at issue. Being more abundant in most deposits than uranium, its extraction would place less pressure on other fossil fuel resources used for mining and extracting it. Indeed, thorium-electricity could be piped in for that purpose.

It all sounds great: however, the infrastructure would be huge to switch over entirely to thorium, as it would to switch to anything else including hydrogen and biofuels. It is this that is the huge mountain of resistance there will be to all kinds of new technology. My belief is that through cuts in energy use following post peak oil (and peak gas), we may be able to produce liquid fuels from coal, possibly using electricity produced from thorium, Thorium produces less of a nuclear waste problem finally, since fewer actinides result from the thorium fuel cycle than that from uranium. Renewables should be implemented wherever possible too, in the final energy mix that will be the fulcrum on which the survival of human civilization is poised.

By. Professor Chris Rhodes

Professor Chris Rhodes is a writer and researcher. He studied chemistry at Sussex University, earning both a B.Sc and a Doctoral degree (D.Phil.); rising to become the youngest professor of physical chemistry in the U.K. at the age of 34.
A prolific author, Chris has published more than 400 research and popular science articles (some in national newspapers: The Independent and The Daily Telegraph)
He has recently published his first novel, "University Shambles" was published in April 2009 (Melrose Books). http://universityshambles.com




Back to homepage


Leave a comment

Leave a comment




Oilprice - The No. 1 Source for Oil & Energy News