• 2 hours API Reports Seventh Large Crude Draw In Seven Weeks
  • 2 hours Maduro’s Advisors Recommend Selling Petro At Steep 60% Discount
  • 3 hours EIA: Shale Oil Output To Rise By 1.8 Million Bpd Through Q1 2019
  • 4 hours IEA: Don’t Expect Much Oil From Arctic National Wildlife Refuge Before 2030
  • 5 hours Minister Says Norway Must Prepare For Arctic Oil Race With Russia
  • 6 hours Eight Years Late—UK Hinkley Point C To Be In Service By 2025
  • 7 hours Sunk Iranian Oil Tanker Leave Behind Two Slicks
  • 8 hours Saudi Arabia Shuns UBS, BofA As Aramco IPO Coordinators
  • 15 hours WCS-WTI Spread Narrows As Exports-By-Rail Pick Up
  • 20 hours Norway Grants Record 75 New Offshore Exploration Leases
  • 24 hours China’s Growing Appetite For Renewables
  • 1 day Chevron To Resume Drilling In Kurdistan
  • 1 day India Boosts Oil, Gas Resource Estimate Ahead Of Bidding Round
  • 1 day India’s Reliance Boosts Export Refinery Capacity By 30%
  • 1 day Nigeria Among Worst Performers In Electricity Supply
  • 2 days ELN Attacks Another Colombian Pipeline As Ceasefire Ceases
  • 2 days Shell Buys 43.8% Stake In Silicon Ranch Solar
  • 2 days Saudis To Award Nuclear Power Contracts In December
  • 2 days Shell Approves Its First North Sea Oil Project In Six Years
  • 2 days China Unlikely To Maintain Record Oil Product Exports
  • 2 days Australia Solar Power Additions Hit Record In 2017
  • 2 days Morocco Prepares $4.6B Gas Project Tender
  • 2 days Iranian Oil Tanker Sinks After Second Explosion
  • 5 days Russia To Discuss Possible Exit From OPEC Deal
  • 5 days Iranian Oil Tanker Drifts Into Japanese Waters As Fires Rage On
  • 5 days Kenya Cuts Share Of Oil Revenues To Local Communities
  • 5 days IEA: $65-70 Oil Could Cause Surge In U.S. Shale Production
  • 5 days Russia’s Lukoil May Sell 20% In Oil Trader Litasco
  • 5 days Falling Chinese Oil Imports Weigh On Prices
  • 5 days Shell Considers Buying Dutch Green Energy Supplier
  • 6 days Wind And Solar Prices Continue To Fall
  • 6 days Residents Flee After Nigeria Gas Company Pipeline Explodes
  • 6 days Venezuela To Pre-Mine Petro For Release In 6-Weeks
  • 6 days Trump Says U.S. “Could Conceivably” Rejoin Paris Climate Accord
  • 6 days Saudis Shortlist New York, London, Hong Kong For Aramco IPO
  • 6 days Rigid EU Rules Makes ICE Move 245 Oil Futures Contracts To U.S.
  • 6 days Norway Reports Record Gas Sales To Europe In 2017
  • 7 days Trump’s Plan Makes 65 Billion BOE Available For Drilling
  • 7 days PetroChina’s Biggest Refinery Doubles Russian Pipeline Oil Intake
  • 7 days NYC Sues Five Oil Majors For Contributing To Climate Change
Alt Text

Fuel Cell Breakthrough Lowers Costs And Ups Capacity

Scientists from the University of…

Alt Text

Algae May Be Green Energy’s Secret Weapon

A new breakthrough from Cambridge…

Brian Westenhaus

Brian Westenhaus

Brian is the editor of the popular energy technology site New Energy and Fuel. The site’s mission is to inform, stimulate, amuse and abuse the…

More Info

Promising Discoveries made in Fuel Cell Research

Promising Discoveries made in Fuel Cell Research

Ballard Power Systems, a Vancouver British Columbia, Canada based fuel cell manufacturer is flirting with becoming profitable.  The enthusiasm surrounding fuel cells has been the roller coaster ride of the past generation with hopes pushing Ballard’s stock for example beyond $120 while today it’s about $1.

But Ballard stays in the hunt, average product cost has fallen by 60%, revenue is expected to surpass $100 million in fiscal 2012, more than double 2009 results, and the company is projecting it will have positive cash flow in the second half of 2012.

Ballard might hit the breakeven mark, with another deal done, for “adjusted” earnings before interest, taxes, depreciation and amortization, a financial measuring number of operating performance that excludes certain items.  Adjusted earnings suggest that true profitability is within reach.

Ballard isn’t alone – companies such as FuelCell Energy and ClearEdge are demonstrating that they’re closing in on that goal, too.  Finally fuel cells can be cost-competitive and simply better.

Telecom companies see the benefits of fuel cells for providing clean back-up power, more municipalities are adding fuel cell-powered buses to their fleets, more warehouses are ditching lead-acid batteries in favour of fuel-cell forklifts, and distributed power generators look for more efficient ways to use natural gas or biogas to produce electricity, or to use surplus or off-peak renewable energy to make and store the hydrogen that powers fuel cells.

Fuel cells are just not ready for vehicles – yet.

Fuel cells have made strides, as Ballard has shown in cutting costs, but the hydrogen bug remains – getting the fuel, hydrogen, in place from conventional sources is a whole system in itself.

Pacific Northwest National Laboratory is at work for cheaper, better fuel cells using ionic liquids. One ionic catalyst of interest results in either faster or more energy efficient production but not both.

PNNL’s Hydrogen Gas Producing Catalyst
PNNL’s Hydrogen Gas Producing Catalyst. Combined with an acidic ionic liquid, this catalyst can make hydrogen gas fast and efficiently.

Now, the PNNL researchers have found a condition that creates hydrogen faster without a loss in efficiency.  It requires the entire system – the hydrogen-producing catalyst and the liquid environment in which it works – to overcome the speed-efficiency tradeoff.

Chemist John Roberts of the Centre for Molecular Electrocatalysis at the PNNL said, “Our work shows that the liquid medium can improve the catalyst’s performance. It’s an important step in the transformation of laboratory results into useable technology.”

The results also provide molecular details into how the catalytic material converts electrical energy into the chemical bonds between hydrogen atoms. This information will help the researchers build better catalysts, ones that are both fast and efficient, and made with the common metal nickel instead of expensive platinum.

The team of PNNL chemists modelled this dissolvable catalyst after a protein called a hydrogenase. Such a protein helps tie two hydrogen atoms together with electrons, storing energy in their chemical bond in the process. They modelled the catalytic centre after the protein’s important parts and built a chemical scaffold around it.

Previously the catalyst was either efficient but slow, making about a thousand hydrogen molecules per second; or inefficient yet fast – clocking in at 100,000 molecules per second.  (Efficiency is based on how much electricity the catalyst requires.) The previous work didn’t get around this pesky relation between speed and efficiency in the catalysts – it seemed they could have one but not the other.

Trying to beat the circumstances Roberts and his colleagues put the slow catalyst in a medium called an acidic ionic liquid (ionic liquids are liquid salts and contain molecules or atoms with negative or positive charges mixed together), and mixed the catalyst, the ionic liquid, and a drop of water. The catalyst, with the help of the ionic liquid and an electrical current, produced hydrogen molecules, stuffing some of the electrons coming in from the current into the hydrogen’s chemical bonds, as expected.

As they continued to add more water, they expected the catalyst to speed up briefly then slow down, as the slow catalyst in their previous solvent did. But that’s not what they saw.  “The catalyst lights up like a rocket when you start adding water,” said Roberts. At the peak the catalyst produced up to 53,000 hydrogen molecules per second while the catalyst stayed just as efficient as when it produced the hydrogen gas more slowly.

The results were published online June 8 in the Proceedings of the National Academy of Sciences and provide insights into making better materials for energy production destined for fuel cells.

In depth, the team also wanted to understand how the catalyst worked in its liquid salt environment. The speed of hydrogen production suggested that the catalyst moved electrons around fast. But something also had to be moving protons around fast, because protons are the positively charged hydrogen ions that electrons follow around. Just like on an assembly line, protons move through the catalyst or a protein such as hydrogenase, pick up electrons, form bonds between pairs to make hydrogen, then fall off the catalyst.

Additional tests hinted how this catalyst-ionic liquid set-up works. Roberts suspects the water and the ionic liquid collaborated to mimic parts of the natural hydrogenase protein that shuffled protons through. In these proteins, the chemical scaffold holding the catalytic centre also contributes to fast proton movement. The ionic liquid-water mixture may be doing the same thing.

Next up the team will explore the data they gathered about why the catalyst works so fast in this mixture. They will also need to attach it to a surface for practical use.

The catalyst produces hydrogen gas. To create a fuel technology that converts electrical energy to chemical bonds and back again, the PNNL team plans to examine ionic liquids that will help a catalyst take the hydrogen molecule apart.  That would make the chemical to electrical to chemical cycle complete.

By. Brian Westenhaus

Source: The Fuel Cell Saga Brightens

Back to homepage

Leave a comment
  • Kenneth Green on June 21 2012 said:
    The question is, how much of Ballard's nascent "profitability" is due to genuine success in free-markets, and how much is due to the ongoing tidal wave of governmental mandates and subsidies that tilt the competitive playing field heavily in the direction of non-carbon energy?

    If Ballard is succeeding as a private company, with private capital, competing against other forms of energy without governmental favoritism, I'm happy for them.

    But if what's happening (and I suspect this is the case) is that Ballard is prospering only because various governments have imposed higher costs on their competitors for political reasons, at the end of the day, what you have is just another crony company looting ratepayers and taxpayers.
  • Bob Berke on June 21 2012 said:
    Ballard is a Canadian company, a country that has a conservative government, an energy based economy, is not very likely to "impose higher costs" on traditional energy sources just to benefit an emerging fuel cell industry.

Leave a comment

Oilprice - The No. 1 Source for Oil & Energy News