• 10 hours U.S. Oil Production To Increase in November As Rig Count Falls
  • 12 hours Gazprom Neft Unhappy With OPEC-Russia Production Cut Deal
  • 14 hours Disputed Venezuelan Vote Could Lead To More Sanctions, Clashes
  • 16 hours EU Urges U.S. Congress To Protect Iran Nuclear Deal
  • 18 hours Oil Rig Explosion In Louisiana Leaves 7 Injured, 1 Still Missing
  • 19 hours Aramco Says No Plans To Shelve IPO
  • 3 days Trump Passes Iran Nuclear Deal Back to Congress
  • 3 days Texas Shutters More Coal-Fired Plants
  • 4 days Oil Trading Firm Expects Unprecedented U.S. Crude Exports
  • 4 days UK’s FCA Met With Aramco Prior To Proposing Listing Rule Change
  • 4 days Chevron Quits Australian Deepwater Oil Exploration
  • 4 days Europe Braces For End Of Iran Nuclear Deal
  • 4 days Renewable Energy Startup Powering Native American Protest Camp
  • 4 days Husky Energy Set To Restart Pipeline
  • 4 days Russia, Morocco Sign String Of Energy And Military Deals
  • 5 days Norway Looks To Cut Some Of Its Generous Tax Breaks For EVs
  • 5 days China Set To Continue Crude Oil Buying Spree, IEA Says
  • 5 days India Needs Help To Boost Oil Production
  • 5 days Shell Buys One Of Europe’s Largest EV Charging Networks
  • 5 days Oil Throwback: BP Is Bringing Back The Amoco Brand
  • 5 days Libyan Oil Output Covers 25% Of 2017 Budget Needs
  • 5 days District Judge Rules Dakota Access Can Continue Operating
  • 6 days Surprise Oil Inventory Build Shocks Markets
  • 6 days France’s Biggest Listed Bank To Stop Funding Shale, Oil Sands Projects
  • 6 days Syria’s Kurds Aim To Control Oil-Rich Areas
  • 6 days Chinese Teapots Create $5B JV To Compete With State Firms
  • 6 days Oil M&A Deals Set To Rise
  • 6 days South Sudan Tightens Oil Industry Security
  • 6 days Over 1 Million Bpd Remain Offline In Gulf Of Mexico
  • 6 days Turkmenistan To Spend $93-Billion On Oil And Gas Sector
  • 7 days Indian Hydrocarbon Projects Get $300 Billion Boost Over 10 Years
  • 7 days Record U.S. Crude Exports Squeeze North Sea Oil
  • 7 days Iraq Aims To Reopen Kirkuk-Turkey Oil Pipeline Bypassing Kurdistan
  • 7 days Supply Crunch To Lead To Oil Price Spike By 2020s, Expert Says
  • 7 days Saudi Arabia Ups November Oil Exports To 7-Million Bpd
  • 7 days Niger Delta State Looks To Break Free From Oil
  • 7 days Brazilian Conglomerate To Expand Into Renewables
  • 7 days Kurdish Independence Could Spark Civil War
  • 7 days Chevron, Total Waiting In The Wings As Shell Mulls Majnoon Exit
  • 8 days The Capital Of Coal Is Looking For Other Options
Busting The Lithium Bubble Myth

Busting The Lithium Bubble Myth

Lithium demand continues to grow…

Mass EV Adoption Could Lead To $10 Oil

Mass EV Adoption Could Lead To $10 Oil

As the adoption of electric…

Spinach + Popeye = Power. But Solar Power?

No need to hammer home the Popeye parallel, so let's get right down to it: there’s a new reason to love spinach. And this new reason is related to the old reason – why your mother insisted you eat it.

Like all leafy greens, spinach is very good for you. Beyond that, the vegetable's intense green is evidence that it can help energy researchers develop a better understanding of the proteins used in photosynthesis, in which plants convert sunlight into nourishment.

“The proteins we study are part of the most efficient system ever built, capable of converting the energy from the sun into chemical energy with an unrivaled 60 percent efficiency,” said Yulia Pushkar, an associate professor of physics at Purdue University involved in an international effort to crack the plant code and create artificial photosynthesis.

Plants use the Sun's energy to convert water and carbon dioxide into oxygen and carbohydrates, which store hydrogen. Developing artificial photosynthesis would lead to methods to convert solar energy into hydrogen-based fuels, which are clean and sustainable.

At Purdue, students are extracting a protein known as Photosystem II, or PSII, from spinach. The extraction process takes two days and requires a specially built laboratory that keeps the spinach cold and in the dark. The next step is to “excite” the proteins with lasers and record changes in the configuration of electrons in their molecules.

“The laser acts as the sun in this experiment,” Pushkar explains. “Once the proteins start working, we use advanced techniques like electron paramagnetic resonance and X-ray spectroscopy to observe how the electronic structure of the molecules change over time as they perform their functions.”

Related Article: Photonics Breakthrough Taking Solar Power to a whole New Level

PSII is needed for photosynthesis to split water molecules into oxygen, electrons and protons. Pushkar says that during this process, part of the protein, called the oxygen-evolving complex, extracts four electrons from PSII as it cycles through five states. So far the team has identified the structures of the first and third states, and published their findings in the journal Nature.

Here's how they do it, according to the leader of the international team, Petra Fromme, a professor of chemistry and biochemistry at Arizona State University: researchers use science's most powerful X-ray laser, called the LCLS, run by the U.S. Department of Energy, which is capable of laser pulses as fast as a femtosecond, or one-quadrillionth of a second.

In a statement to the Purdue University news department, Fromme says, these pulses “record snapshots of the PSII crystals before they explode.” That method allowed the researchers to identify two of the structures thus far.

The job of the Purdue team is to use these results to determine how a plant's electronic configurations change over time. So far, Pushkar's team has been able to do just that with the two states already identified, a major step to gaining a full understanding of using artificial photosynthesis to generate renewable fuels.

By Andy Tully of Oilprice.com



Join the discussion | Back to homepage

Leave a comment

Leave a comment

Oilprice - The No. 1 Source for Oil & Energy News