• 12 hours Oil Prices Rise After U.S. API Reports Strong Crude Inventory Draw
  • 13 hours Oil Gains Spur Growth In Canada’s Oil Cities
  • 14 hours China To Take 5% Of Rosneft’s Output In New Deal
  • 14 hours UAE Oil Giant Seeks Partnership For Possible IPO
  • 15 hours Planting Trees Could Cut Emissions As Much As Quitting Oil
  • 16 hours VW Fails To Secure Critical Commodity For EVs
  • 17 hours Enbridge Pipeline Expansion Finally Approved
  • 18 hours Iraqi Forces Seize Control Of North Oil Co Fields In Kirkuk
  • 19 hours OPEC Oil Deal Compliance Falls To 86%
  • 1 day U.S. Oil Production To Increase in November As Rig Count Falls
  • 2 days Gazprom Neft Unhappy With OPEC-Russia Production Cut Deal
  • 2 days Disputed Venezuelan Vote Could Lead To More Sanctions, Clashes
  • 2 days EU Urges U.S. Congress To Protect Iran Nuclear Deal
  • 2 days Oil Rig Explosion In Louisiana Leaves 7 Injured, 1 Still Missing
  • 2 days Aramco Says No Plans To Shelve IPO
  • 4 days Trump Passes Iran Nuclear Deal Back to Congress
  • 4 days Texas Shutters More Coal-Fired Plants
  • 5 days Oil Trading Firm Expects Unprecedented U.S. Crude Exports
  • 5 days UK’s FCA Met With Aramco Prior To Proposing Listing Rule Change
  • 5 days Chevron Quits Australian Deepwater Oil Exploration
  • 5 days Europe Braces For End Of Iran Nuclear Deal
  • 5 days Renewable Energy Startup Powering Native American Protest Camp
  • 5 days Husky Energy Set To Restart Pipeline
  • 5 days Russia, Morocco Sign String Of Energy And Military Deals
  • 6 days Norway Looks To Cut Some Of Its Generous Tax Breaks For EVs
  • 6 days China Set To Continue Crude Oil Buying Spree, IEA Says
  • 6 days India Needs Help To Boost Oil Production
  • 6 days Shell Buys One Of Europe’s Largest EV Charging Networks
  • 6 days Oil Throwback: BP Is Bringing Back The Amoco Brand
  • 6 days Libyan Oil Output Covers 25% Of 2017 Budget Needs
  • 6 days District Judge Rules Dakota Access Can Continue Operating
  • 7 days Surprise Oil Inventory Build Shocks Markets
  • 7 days France’s Biggest Listed Bank To Stop Funding Shale, Oil Sands Projects
  • 7 days Syria’s Kurds Aim To Control Oil-Rich Areas
  • 7 days Chinese Teapots Create $5B JV To Compete With State Firms
  • 7 days Oil M&A Deals Set To Rise
  • 7 days South Sudan Tightens Oil Industry Security
  • 7 days Over 1 Million Bpd Remain Offline In Gulf Of Mexico
  • 7 days Turkmenistan To Spend $93-Billion On Oil And Gas Sector
  • 8 days Indian Hydrocarbon Projects Get $300 Billion Boost Over 10 Years
Finally: A Way To Invest In Blockchain

Finally: A Way To Invest In Blockchain

Cryptocurrencies and the blockchain are…

Are Oil Stocks Close To A Breakout?

Are Oil Stocks Close To A Breakout?

As oil markets continue to…

Silicon Stretching Could Mean Much Cheaper Solar Energy

Researchers at the Norwegian University of Science and Technology (NTNU) have developed a commonsense way to lower the cost of solar panels, focusing on their most expensive component: silicon.

“We’re using less expensive raw materials and smaller amounts of them [and] we have fewer production steps and our total energy consumption is potentially lower,” Fredrik Martinsen and Ursula Gibson of NTNU’s Department of Physics said in a statement.

Gibson and Martinsen say they’ve developed a processing technique that produces solar cells from silicon 1,000 times less pure than what’s now considered essential for making the panels. As a result, the silicon is much less expensive.

Related: Everyday Americans Can Now Invest In Solar Power Like Germans

The solar cells used by the NTNU team, working with colleagues at Clemson University, are made from silicon fibers coated in glass. The researchers used the same stretching methods used to make fiber-optic cables, but in this case added a dollop of silicone.

Fiber-optic cables are made by softening thin glass rods with heat, then stretching them into filaments. The NTNU fibers for solar cells are made by inserting a silicon core into a glass tube about one-tenth of an inch in diameter. This assembly is then heated to soften the glass and melt the silicon.

As with fiber-optic cable, the assembly is stretched until it becomes a thin fiber of silicon encased in glass as much as 100 times narrower than it was before.

By borrowing the technique for making fiber-optic cables, the NTNU-Clemson researchers also solved another problem -- the need for pure silicon in solar cells. Ridding silicon of contaminants takes hard work, a lot of energy and a generous research grant. Melting and stretching it, though, purifies silicon even as it turns it into a filament suitable for a solar cell.

But by melting and stretching the silicon, Gibson says, “We can use relatively dirty silicon, and the purification occurs naturally as part of the process of melting and re-solidifying in fiber form. This means that you save energy, and several production steps.”

Related: Renewable Energy Finally Getting Cheaper In Germany

For example, the NTNU-Clemson approach requires only about one-third of the energy to produce a solar cell than that of the conventional method, according to an estimate in their article on the research published in the journal Scientific Reports.

Gibson said she was inspired to combine silicon purification and solar cell production after reading an article on silicon fibers by John Ballato at Clemson, a leading researcher in developing fiber-optic materials.

“I saw that the method he described could also be used for solar cells,” Gibson said. So she and her research team started working with Ballato, “and we developed a key technique at NTNU that improved the fiber quality.”

By Andy Tully of Oilprice.com

More Top Reads From Oilprice.com:



Join the discussion | Back to homepage

Leave a comment

Leave a comment

Oilprice - The No. 1 Source for Oil & Energy News