• 3 hours Russia, Saudis Team Up To Boost Fracking Tech
  • 9 hours Conflicting News Spurs Doubt On Aramco IPO
  • 10 hours Exxon Starts Production At New Refinery In Texas
  • 11 hours Iraq Asks BP To Redevelop Kirkuk Oil Fields
  • 1 day Oil Prices Rise After U.S. API Reports Strong Crude Inventory Draw
  • 1 day Oil Gains Spur Growth In Canada’s Oil Cities
  • 1 day China To Take 5% Of Rosneft’s Output In New Deal
  • 1 day UAE Oil Giant Seeks Partnership For Possible IPO
  • 1 day Planting Trees Could Cut Emissions As Much As Quitting Oil
  • 1 day VW Fails To Secure Critical Commodity For EVs
  • 1 day Enbridge Pipeline Expansion Finally Approved
  • 1 day Iraqi Forces Seize Control Of North Oil Co Fields In Kirkuk
  • 1 day OPEC Oil Deal Compliance Falls To 86%
  • 2 days U.S. Oil Production To Increase in November As Rig Count Falls
  • 2 days Gazprom Neft Unhappy With OPEC-Russia Production Cut Deal
  • 2 days Disputed Venezuelan Vote Could Lead To More Sanctions, Clashes
  • 2 days EU Urges U.S. Congress To Protect Iran Nuclear Deal
  • 2 days Oil Rig Explosion In Louisiana Leaves 7 Injured, 1 Still Missing
  • 2 days Aramco Says No Plans To Shelve IPO
  • 5 days Trump Passes Iran Nuclear Deal Back to Congress
  • 5 days Texas Shutters More Coal-Fired Plants
  • 5 days Oil Trading Firm Expects Unprecedented U.S. Crude Exports
  • 5 days UK’s FCA Met With Aramco Prior To Proposing Listing Rule Change
  • 5 days Chevron Quits Australian Deepwater Oil Exploration
  • 6 days Europe Braces For End Of Iran Nuclear Deal
  • 6 days Renewable Energy Startup Powering Native American Protest Camp
  • 6 days Husky Energy Set To Restart Pipeline
  • 6 days Russia, Morocco Sign String Of Energy And Military Deals
  • 6 days Norway Looks To Cut Some Of Its Generous Tax Breaks For EVs
  • 6 days China Set To Continue Crude Oil Buying Spree, IEA Says
  • 6 days India Needs Help To Boost Oil Production
  • 6 days Shell Buys One Of Europe’s Largest EV Charging Networks
  • 6 days Oil Throwback: BP Is Bringing Back The Amoco Brand
  • 6 days Libyan Oil Output Covers 25% Of 2017 Budget Needs
  • 6 days District Judge Rules Dakota Access Can Continue Operating
  • 7 days Surprise Oil Inventory Build Shocks Markets
  • 7 days France’s Biggest Listed Bank To Stop Funding Shale, Oil Sands Projects
  • 7 days Syria’s Kurds Aim To Control Oil-Rich Areas
  • 7 days Chinese Teapots Create $5B JV To Compete With State Firms
  • 7 days Oil M&A Deals Set To Rise
Finally: A Way To Invest In Blockchain

Finally: A Way To Invest In Blockchain

Cryptocurrencies and the blockchain are…

New Tech Is Transforming Japan’s Energy Sector

New Tech Is Transforming Japan’s Energy Sector

The tech that built bitcoin…

Putting Structural Material On A Diet

The albatross for transportation, in so many ways, is fuel: its cost, its volume, and its weight.

Sure, sci-fi movies show city-sized spacecraft wafting their interstellar courses as if they were wisps of smoke, but getting them off the ground is another matter altogether.

So the lighter the vessel, less force – and therefore less fuel – is needed. And engineers at the Massachusetts Institute of Technology and the Lawrence Livermore National Laboratory, or LLNL, think they have found the answer.

An account of the research by MIT uses the Washington Monument and the Eiffel Tower as examples of soaring architecture: one whose strength is based on heavy stone, the other based on an airy latticework of steel. All the MIT and LLNL engineers did was reduce this to a microscale.

They’ve designed a new system that could draw on many different materials, whether metals, ceramics or polymers, and they believe their structures may have achieved record rigidity for a given weight.

Such structures would be useful in any application that needs rigidity, strength and lightweight because of their low density. That would include spacecraft, of course, but also on smaller items such as smart phone batteries, which today make the devices almost unnaturally heavy.

Related Article: Latest Oil Train Derailment Adds Pressure For Stronger U.S. Action

The MIT and LLNL engineers made these micro-lattices with a highly precise 3-D printing technique called projection micro-stereolithography, which the two teams of engineers have been working on since 2008.

In “Ultralight, Ultrastiff Mechanical Metamaterials,” published in the June 20 issue of the journal Science, the researchers report that they overcame the weight issue by reducing density without making the structure weak and brittle, the way osteoporosis weakens bones.

Their MIT-LLNL materials, regardless of their nature, “can withstand a load of at least 160,000 times their own weight," said LLNL Engineer Xiaoyu “Rayne” Zheng, lead author of the article. "The key to this ultrahigh stiffness is that all the micro-structural elements … do not bend under [the] applied load.”

So how good is this material? According to the Science article, the MIT-LLNL materials are 100 times stiffer than other ultra-lightweight lattice materials previously reported in academic journals.

By Andy Tully of Oilprice.com



Join the discussion | Back to homepage

Leave a comment

Leave a comment

Oilprice - The No. 1 Source for Oil & Energy News