• 3 minutes e-car sales collapse
  • 6 minutes America Is Exceptional in Its Political Divide
  • 11 minutes Perovskites, a ‘dirt cheap’ alternative to silicon, just got a lot more efficient
  • 3 hours GREEN NEW DEAL = BLIZZARD OF LIES
  • 15 hours Could Someone Give Me Insights on the Future of Renewable Energy?
  • 14 hours How Far Have We Really Gotten With Alternative Energy
  • 15 hours "What’s In Store For Europe In 2023?" By the CIA (aka RFE/RL as a ruse to deceive readers)
  • 3 days Bankruptcy in the Industry
  • 5 hours Oil Stocks, Market Direction, Bitcoin, Minerals, Gold, Silver - Technical Trading <--- Chris Vermeulen & Gareth Soloway weigh in
  • 4 days The United States produced more crude oil than any nation, at any time.
Big Oil’s Carbon Capture Conundrum

Big Oil’s Carbon Capture Conundrum

Energy experts and environmentalists express…

Don’t Be Afraid Of The Damp

Charging your cell phone might one day be as easy as exposing it to humidity.

In 2013, Nenad Miljkovic, a postdoctoral researcher at the Massachusetts Institute of Technology, and Evelyn Wang, an MIT associate professor, along with two other researchers learned that when drops of water bounce off superhydrophobic, or highly water-repellent, surfaces, they develop an electric charge.

More recently, they learned that this process can generate extremely small amounts of electricity that, if enhanced, could be used to charge cell phones and other electronic devices simply by using ambient humidity in the air.

According to their research, published in the journal Applied Physics Letters, such a device would be simple: layers of thin, flat metal sheets such as copper, though any conductive metal would work, including less-costly aluminum. The layers of metal alternate between those that attract water and those that repel it, causing the droplets to bounce back and forth, rapidly constantly generating electricity.

Yet early tests show the amount of electricity produced was a mere 15 picowatts, or 15 trillionths of a watt, per square centimeter of metal. But Miljkovic says this doesn’t make his team’s discovery a mere theoretical exercise. He says the system can be adjusted to generate at least 1 microwatt, or millionth of a watt, per square centimeter.

That’s comparable to what’s found in other devices that have been proposed for gathering waste heat and other sources of ambient energy. And, he says, it’s enough to provide useful power for small electronic gadgets in certain remote areas.

Related Article: Harvard Research Team has Breakthrough on Battery Storage

That’s good news if you’re camping by a river in the mountains. Miljkovic explains that at 1 microwatt per square centimeter, a 20-inch cube-shaped array of the metal layers would be enough to charge a cell phone in about 12 hours – slow, but acceptable given the locale.

But this scenario highlights another limitation of the MIT discovery: The air needed to cause the reaction must be more humid and cooler than the overall ambient air, such as a cave or a riverside.

Still, Miljkovic says for some small electronic devices, even a minuscule amount of energy should be capable of producing several hours of power, especially in areas with morning. “Water will condense out from the atmosphere, it happens naturally,” he says.

ADVERTISEMENT

The key, Miljkovic explains, is temperature contrast, which causes humid air to condense. As an example, he cites a glass containing a cold beverage developing beads of condensation on a warm summer day. In other words, if you have a temperature differential, you have electricity.

By Andy Tully of Oilprice.com



Join the discussion | Back to homepage



Leave a comment

Leave a comment

EXXON Mobil -0.35
Open57.81 Trading Vol.6.96M Previous Vol.241.7B
BUY 57.15
Sell 57.00
Oilprice - The No. 1 Source for Oil & Energy News